A182411 Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.
1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0
Examples
Triangle begins: 1; 2, 2; 6, 4, 6; 20, 10, 12, 20; 70, 28, 28, 40, 70; 252, 84, 72, 90, 140, 252; 924, 264, 198, 220, 308, 504, 924; 3432, 858, 572, 572, 728, 1092, 1848, 3432; 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870; 48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620; ... Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
References
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.
Links
- Alexander Borisov, Quotient singularities, integer ratios of factorials and the Riemann Hypothesis, arXiv:math/0505167 [math.NT], 2005; International Mathematics Research Notices, Vol. 2008, Article ID rnn052, page 2 (Theorem 2).
- Ira Gessel, Integer quotients of factorials and algebraic multivariable hypergeometric series, MIT Combinatorics Seminar, September 2011 (slides).
- Hans-Christian Herbig and Mateus de Jesus Gonçalves, On the numerology of trigonometric polynomials, arXiv:2311.13604 [math.HO], 2023.
- Kevin Limanta and Norman Wildberger, Super Catalan Numbers, Chromogeometry, and Fourier Summation over Finite Fields, arXiv:2108.10191 [math.CO], 2021. See Table 1 p. 2 where terms are shown as an array.
Programs
-
Magma
[Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
-
Mathematica
Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]
Comments