A182440 Table, read by antidiagonals, in which the n-th row comprises A214206(n) in position 0 followed by a second order recursive series G in which each product G(i)*G(i+1) lies in the same row of A001477 (interpreted as a square array).
0, 14, 4, 0, 14, 7, 16, 1, 14, 8, 126, 40, 2, 14, 10, 770, 287, 60, 3, 14, 11, 4524, 1730, 420, 72, 4, 14, 12, 26404, 10141, 2522, 497, 88, 5, 14, 13, 153930, 59164, 14774, 2978, 602, 100, 6, 14, 14, 897206
Offset: 0
Examples
For i = 1,2,3,4 ..., a(1,i)*a(1,i+1) = 14*1,1*40,40*287,287*1730, ...; and, each product is 4 more than a triangular number and thus lies in row 4 of square array A001477.
Programs
-
Mathematica
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1}, While[xS1-xS0*(xS0+1)/2>xS0,xS0++]; xS0]]; overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2}, While[xS2-xS0*(xS0+1)/2>xS0,xS0++]; xS2 - (xS0*(1+xS0)/2)]]; K1 = 0; m = 14;table=Reap[While[K1<16,J1=highTri[m*K1];X = 2*(m+K1+(J1*2+1));K2 = (6 K1 - m + X);K3 = 6 K2 - K1 + X; K4 = 6 K3 - K2 + X; K5 = 6 K4 -K3 + X; K6 = 6*K5 - K4 + X;K7 = 6*K6-K5+X; K8 = 6*K7-K6+X; Sow[J1,c];Sow[m,d]; Sow[K1,e];Sow[K2,f];Sow[K3,g];Sow[K4,h]; Sow[K5,i]; Sow[K6,j];Sow[K7,k];Sow[K8,l]; K1++]][[2]]; a=1; list5 = Reap[While[a<11,b=a; While[b>0,Sow[table[[b,a+1-b]]];b--];a++]][[2,1]]; list5
Comments