cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182453 a(n) = 3^n - n*(n-1)/2.

Original entry on oeis.org

1, 3, 8, 24, 75, 233, 714, 2166, 6533, 19647, 59004, 177092, 531375, 1594245, 4782878, 14348802, 43046601, 129140027, 387420336, 1162261296, 3486784211, 10460352993, 31381059378, 94143178574, 282429536205, 847288609143, 2541865828004, 7625597484636, 22876792454583, 68630377364477, 205891132094214, 617673396283482, 1853020188851345, 5559060566554995
Offset: 0

Views

Author

Aditya Subramanian, Apr 29 2012

Keywords

Comments

For n>0, r(n)=a(n)/a(n-1) is approximately equal to 3. Average of the sum of r(n) is 3. Except for r(3) = 2.666666666666667, all other r(n)'s are just above zero and r(n) tends to 3 as n tends to infinity.

Examples

			For n=6, a(n)=714, a(n-1)=233, r(n)=3.0643776824034334763948497854077.
For n=21, a(n)=10460352993, a(n-1)=3486784211, r(n) = 3.0000001032469972946083183924341.
		

Formula

G.f.: (1-3*x+2*x^2+2*x^3)/((1-x)^3*(1-3*x)). - Colin Barker, May 07 2012

Extensions

Edited by N. J. A. Sloane, May 01 2012