cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aditya Subramanian

Aditya Subramanian's wiki page.

Aditya Subramanian has authored 4 sequences.

A182453 a(n) = 3^n - n*(n-1)/2.

Original entry on oeis.org

1, 3, 8, 24, 75, 233, 714, 2166, 6533, 19647, 59004, 177092, 531375, 1594245, 4782878, 14348802, 43046601, 129140027, 387420336, 1162261296, 3486784211, 10460352993, 31381059378, 94143178574, 282429536205, 847288609143, 2541865828004, 7625597484636, 22876792454583, 68630377364477, 205891132094214, 617673396283482, 1853020188851345, 5559060566554995
Offset: 0

Author

Aditya Subramanian, Apr 29 2012

Keywords

Comments

For n>0, r(n)=a(n)/a(n-1) is approximately equal to 3. Average of the sum of r(n) is 3. Except for r(3) = 2.666666666666667, all other r(n)'s are just above zero and r(n) tends to 3 as n tends to infinity.

Examples

			For n=6, a(n)=714, a(n-1)=233, r(n)=3.0643776824034334763948497854077.
For n=21, a(n)=10460352993, a(n-1)=3486784211, r(n) = 3.0000001032469972946083183924341.
		

Formula

G.f.: (1-3*x+2*x^2+2*x^3)/((1-x)^3*(1-3*x)). - Colin Barker, May 07 2012

Extensions

Edited by N. J. A. Sloane, May 01 2012

A196876 a(n) = a(n-no-1)+....+a(n-1)+(n-no-2) where no is the 'no+1'th order of the series and 'n' is the element number, here no=6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 14, 28, 56, 112, 224, 448, 896, 1786, 3559, 7091, 14127, 28143, 56063, 111679, 222463, 443141, 882724, 1758358, 3502590, 6977038, 13898014, 27684350, 55146238, 109849336, 218815949, 435873541, 868244493, 1729511949, 3445125885
Offset: 1

Author

Aditya Subramanian, Oct 07 2011

Keywords

Comments

A196787, A000126, and A000124 are all specific series of this general formula of series. When no=2 the series is A196787. When no=0 the series is A000124 with an additional '1' at the beginning. When no=1 the series is A000126 with an additional '1' at the beginning.
The data given above is the series with no=6 and n=25, having a(1)=.....a(no+1)=1 initially.

Examples

			For n=25, no=6, then a(1)=1, a(2)=1, ......, a(no)=1 and a(7)=a(1)+a(2)+....a(no)+(6-no), a(8)=a(2)+...a(no+1)+(7-no), a(n)=a(n-no)+....a(n-1)+((n-1)-no) and so a(25)=a(19)+....a(24)+(24-6).
		

Programs

  • Maple
    A196876 := proc(n)
            option remember;
            if n <= 7 then
                    1;
            else
                    n-6-2+add(procname(n-i),i=1..7) ;
            end if;
    end proc: # R. J. Mathar, Oct 21 2011
  • Mathematica
    CoefficientList[Series[(- 1 + 2 x - 6 x^7 + 4 x^8)/((x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1) (x - 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2012 *)

Formula

a(n)=1 if n<=7, else a(n) = n-no-2+sum_{i=1..no+1} a(n-i), no=6.
G.f.: x*( -1+2*x-6*x^7+4*x^8 ) / ( (x^7+x^6+x^5+x^4+x^3+x^2+x-1)*(x-1)^2 ). - R. J. Mathar, Oct 21 2011

A196875 a(n) = a(n-4) + a(n-3) + a(n-2) + a(n-1) + (n-5).

Original entry on oeis.org

1, 1, 1, 1, 4, 8, 16, 32, 64, 125, 243, 471, 911, 1759, 3394, 6546, 12622, 24334, 46910, 90427, 174309, 335997, 647661, 1248413, 2406400, 4638492, 8940988, 17234316, 33220220, 64034041, 123429591, 237918195, 458602075, 883983931, 1703933822, 3284438054
Offset: 1

Author

Aditya Subramanian, Oct 07 2011

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, -2, 3][j], 0)))^n. <<-1, 1, 1, 1, 1, 4>>)[1, 1]: seq(a(n), n=1..50); # Alois P. Heinz, Oct 15 2011
  • Mathematica
    nn = 40; a[1] = a[2] = a[3] = a[4] = 1; Do[a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + (n - 5), {n, 5, nn}]; Table[a[n], {n, nn}] (* T. D. Noe, Oct 07 2011 *)
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+a[n-4]+(n-5)},a,{n,40}] (* or *) LinearRecurrence[{3,-2,0,0,-1,1},{1,1,1,1,4,8},40] (* Harvey P. Dale, Aug 25 2014 *)

Formula

G.f.: (x^5-3*x^4+2*x-1)*x / ((x^4+x^3+x^2+x-1)*(x-1)^2 ).
a(n) = +3*a(n-1) -2*a(n-2) -a(n-5) +a(n-6).
a(n) = 5/9-n/3 +(10*A000078(n) +17*A000078(n+1) +21*A000078(n+2) -14*A000078(n+3))/9. - R. J. Mathar, Oct 16 2011

A196787 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5) with initial terms 1, 1, 1, 3, 6.

Original entry on oeis.org

1, 1, 1, 3, 6, 12, 24, 46, 87, 163, 303, 561, 1036, 1910, 3518, 6476, 11917, 21925, 40333, 74191, 136466, 251008, 461684, 849178, 1561891, 2872775, 5283867, 9718557, 17875224, 32877674, 60471482, 111224408, 204573593, 376269513, 692067545
Offset: 1

Author

Aditya Subramanian, Oct 06 2011

Keywords

Examples

			a(7) = (a(6): 12) + (a(5): 6) + (a(4): 3) + (n-4: 3) = 24.
		

Programs

  • Mathematica
    LinearRecurrence[{3, -2, 0, -1, 1}, {1, 1, 1, 3, 6}, 42] (* T. D. Noe, Oct 06 2011 *)
  • PARI
    x='x+O('x^43); Vec(x*(-1+2*x-2*x^3) / ((x-1)^2*(x^3+x^2+x-1))) \\ Georg Fischer, Apr 03 2019

Formula

a(1)=1, a(2)=1, a(3)=1; a(n) = a(n-1) + a(n-2) + a(n-3) + n - 4 for n >= 4.
G.f.: x*(-1+2*x-2*x^3) / ((x-1)^2*(x^3+x^2+x-1)).

Extensions

Better name from Charles R Greathouse IV, Oct 06 2011
Edited and corrected by Georg Fischer, Apr 03 2019