cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A196875 a(n) = a(n-4) + a(n-3) + a(n-2) + a(n-1) + (n-5).

Original entry on oeis.org

1, 1, 1, 1, 4, 8, 16, 32, 64, 125, 243, 471, 911, 1759, 3394, 6546, 12622, 24334, 46910, 90427, 174309, 335997, 647661, 1248413, 2406400, 4638492, 8940988, 17234316, 33220220, 64034041, 123429591, 237918195, 458602075, 883983931, 1703933822, 3284438054
Offset: 1

Views

Author

Aditya Subramanian, Oct 07 2011

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, -2, 3][j], 0)))^n. <<-1, 1, 1, 1, 1, 4>>)[1, 1]: seq(a(n), n=1..50); # Alois P. Heinz, Oct 15 2011
  • Mathematica
    nn = 40; a[1] = a[2] = a[3] = a[4] = 1; Do[a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + (n - 5), {n, 5, nn}]; Table[a[n], {n, nn}] (* T. D. Noe, Oct 07 2011 *)
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+a[n-4]+(n-5)},a,{n,40}] (* or *) LinearRecurrence[{3,-2,0,0,-1,1},{1,1,1,1,4,8},40] (* Harvey P. Dale, Aug 25 2014 *)

Formula

G.f.: (x^5-3*x^4+2*x-1)*x / ((x^4+x^3+x^2+x-1)*(x-1)^2 ).
a(n) = +3*a(n-1) -2*a(n-2) -a(n-5) +a(n-6).
a(n) = 5/9-n/3 +(10*A000078(n) +17*A000078(n+1) +21*A000078(n+2) -14*A000078(n+3))/9. - R. J. Mathar, Oct 16 2011

A196876 a(n) = a(n-no-1)+....+a(n-1)+(n-no-2) where no is the 'no+1'th order of the series and 'n' is the element number, here no=6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 14, 28, 56, 112, 224, 448, 896, 1786, 3559, 7091, 14127, 28143, 56063, 111679, 222463, 443141, 882724, 1758358, 3502590, 6977038, 13898014, 27684350, 55146238, 109849336, 218815949, 435873541, 868244493, 1729511949, 3445125885
Offset: 1

Views

Author

Aditya Subramanian, Oct 07 2011

Keywords

Comments

A196787, A000126, and A000124 are all specific series of this general formula of series. When no=2 the series is A196787. When no=0 the series is A000124 with an additional '1' at the beginning. When no=1 the series is A000126 with an additional '1' at the beginning.
The data given above is the series with no=6 and n=25, having a(1)=.....a(no+1)=1 initially.

Examples

			For n=25, no=6, then a(1)=1, a(2)=1, ......, a(no)=1 and a(7)=a(1)+a(2)+....a(no)+(6-no), a(8)=a(2)+...a(no+1)+(7-no), a(n)=a(n-no)+....a(n-1)+((n-1)-no) and so a(25)=a(19)+....a(24)+(24-6).
		

Programs

  • Maple
    A196876 := proc(n)
            option remember;
            if n <= 7 then
                    1;
            else
                    n-6-2+add(procname(n-i),i=1..7) ;
            end if;
    end proc: # R. J. Mathar, Oct 21 2011
  • Mathematica
    CoefficientList[Series[(- 1 + 2 x - 6 x^7 + 4 x^8)/((x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1) (x - 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2012 *)

Formula

a(n)=1 if n<=7, else a(n) = n-no-2+sum_{i=1..no+1} a(n-i), no=6.
G.f.: x*( -1+2*x-6*x^7+4*x^8 ) / ( (x^7+x^6+x^5+x^4+x^3+x^2+x-1)*(x-1)^2 ). - R. J. Mathar, Oct 21 2011
Showing 1-2 of 2 results.