A182460 a(n) = (3/5)*2^(4n+1) - (1/5).
1, 19, 307, 4915, 78643, 1258291, 20132659, 322122547, 5153960755, 82463372083, 1319413953331, 21110623253299, 337769972052787, 5404319552844595, 86469112845513523, 1383505805528216371, 22136092888451461939, 354177486215223391027, 5666839779443574256435, 90669436471097188102963, 1450710983537555009647411
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Programs
-
Magma
[(3/5)*2^(4*n+1) - (1/5): n in [0..20]];
-
Mathematica
(3*2^(4*Range[0,20]+1)-1)/5 (* or *) LinearRecurrence[{17,-16},{1,19},30] (* Harvey P. Dale, Jul 21 2021 *)
Formula
a(n) = (3/5)*2^(4*n+1) - (1/5).
a(n) = 16*a(n-1) + 3 for n > 0.
a(n) = (1/5)*A153893(4*n+1).
a(n) = A016029(4*n+2).
a(n) = A112627(2*n+1).
G.f.: (1+2*x)/((1-x)*(1-16*x)). - Colin Barker, May 06 2012
Comments