A182468 Numbers k such that the equation x^2 - k*y^4 = 1 has a solution for which |y| > 2.
20, 63, 65, 79, 83, 156, 183, 254, 258, 285, 320, 323, 325, 328, 505, 573, 579, 600, 623, 627, 723, 735, 791, 994, 1020, 1023, 1025
Offset: 1
References
- Williams, H. C. and Zarnke, C. R., Computation of the solutions of the Diophantine equation x^2-dy^4=1. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 463-483. Florida Atlantic Univ., Boca Raton, Fla., 1972.
Links
- Pierre Samuel, Résultats élémentaires sur certaines équations diophantiennes, Journal de Théorie des Nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 629-646.
Extensions
Duplicate term 723 removed by Georg Fischer, Mar 19 2022
a(1) corrected by Jinyuan Wang, Aug 09 2022