cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182518 Carmichael numbers of the form C = p*(2p-1)*(3p-2)*(6p-5), where p is prime.

Original entry on oeis.org

63973, 31146661, 703995733, 21595159873, 192739365541, 461574735553, 3976486324993, 10028704049893, 84154807001953, 197531244744661, 741700610203861, 973694665856161, 2001111155103061, 3060522900274753, 3183276534603733, 4271903575869601
Offset: 1

Views

Author

Marius Coman, May 03 2012

Keywords

Comments

We get Carmichael numbers with four prime divisors for p = 7, 271, 337, 727, 1237, 1531, 2281, 3037, 3067.
We get Carmichael numbers with more than four prime divisors for p = 31, 67, 157, 577, 2131, 2731, 3301.
Note: we can see that p, 2p-1, 3p-2 and 6p-5 can all four be primes only for p = 6k+1 (for p = 6k+5, we get 2p-1 divisible by 3), so in that case the formula is equivalent to C = (6k+1)(12k+1)(18k+1)(36k+1).

Programs

  • PARI
    search(lim)={
        my(v=List(),n,f);
        forprime(p=7,lim,
            n=p*(2*p-1)*(3*p-2)*(6*p-5)-1;
            if(n%(p-1),next);
            f=factor(2*p-1);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            f=factor(3*p-2);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            f=factor(6*p-5);
            for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
            listput(v,n+1)
        );
        Vec(v)
    }; \\ Charles R Greathouse IV, Oct 02 2012