cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182568 a(n) = 2*floor(n/4)*(n - 2*(1 + floor(n/4))).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72, 80, 90, 100, 110, 120, 132, 144, 156, 168, 182, 196, 210, 224, 240, 256, 272, 288, 306, 324, 342, 360, 380, 400, 420, 440, 462, 484, 506, 528, 552, 576, 600, 624, 650, 676, 702, 728, 756, 784, 812, 840, 870, 900, 930, 960, 992, 1024, 1056, 1088, 1122, 1156, 1190, 1224, 1260, 1296, 1332, 1368
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 Floor[n/4] (n - 2 (1 + Floor[n/4])), {n, 0, 20}] (* or *)
    Table[(5 - (-1)^n + 2 (n - 4) n - 4 Cos[n Pi/2])/8, {n, 0, 20}] (* or *)
    Table[(5 - (-1)^n - 2 (-I)^n - 2 I^n - 8 n + 2 n^2)/8, {n, 0, 20}] (* or *)
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 2}, 80] (* or *)
    CoefficientList[Series[-2 x^5/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *)

Formula

From R. J. Mathar, Jun 28 2012: (Start)
G.f. -2*x^5 / ( (x + 1)*(x^2 + 1)*(x - 1)^3 ).
a(n) = 2*A001972(n-5) = 2*A130519(n-1). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6). - Eric W. Weisstein, Sep 11 2018