A182599 Number of prime factors of form cn+1 for numbers 7^n+1.
2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 4, 2, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 1, 4, 1, 4, 3, 3, 2, 3, 5, 4, 2, 1, 3, 3, 4, 2, 7, 3, 4, 4, 1, 3, 7, 4, 4, 3, 4, 3, 6, 5, 5, 4, 4, 3, 1, 3, 8, 3, 2, 5, 3, 3, 4, 4, 2, 5, 3, 1, 5, 5, 5, 4, 4, 3, 4, 3, 2, 5, 3, 3, 4, 2, 5, 4, 5, 4, 5, 3, 6, 6, 3, 5, 3, 3
Offset: 2
Keywords
Examples
For n=12, 7^12+1=13841287202=2*73*193*409*1201 has four prime factors of form, namely 73=6n+1, 193=16n+1, 409=34n+1, 1201=100n+1. Thus a(12)=4.
Links
- S. Mustonen, On prime factors of numbers m^n+-1
- Seppo Mustonen, On prime factors of numbers m^n+-1 [Local copy]
Programs
-
Mathematica
m = 7; n = 2; nmax = 100; While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0; For[i = 1, i <= Length[l], i++, {p = l[[i, 1]]; If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]];}]; a[n] = s;} n++;]; Table[a[n], {n, 2, nmax}] Table[{p,e}=Transpose[FactorInteger[7^n+1]]; Sum[If[Mod[p[[i]], n]==1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}]
Comments