A182661 Expansion of x^3*exp(-x)/(3*(1-x)).
2, 0, 20, 80, 630, 4928, 44520, 444960, 4894890, 58738240, 763597692, 10690366960, 160355505310, 2565688083840, 43616697426640, 785100553677888, 14916910519881810, 298338210397633920, 6265102418350314980, 137832253203706926480
Offset: 3
Keywords
Crossrefs
Cf. A000387.
Programs
-
Maple
egf:= x^3 * exp(-x)/(3*(1-x)): a:= n-> n! * coeff (series (egf, x, n+1), x, n): seq (a(n), n=3..25);
-
Mathematica
Table[Count[Flatten[Map[Length,Map[ToCycles,Derangements[n]],{2}]],3],{n,0,8}] Range[0,20]! CoefficientList[Series[x^3/3 Exp[-x]/(1-x),{x,0,20}],x]
Formula
E.g.f.: x^3 * exp(-x)/(3*(1-x)).
In general, E.g.f. for the number of k cycles in the derangements of [n] is: x^k * exp(-x)/(k*(1-x)).
Comments