A182699 Number of emergent parts in all partitions of n.
0, 0, 0, 0, 1, 1, 4, 4, 10, 12, 22, 27, 47, 56, 89, 112, 164, 205, 294, 364, 505, 630, 845, 1052, 1393, 1719, 2235, 2762, 3533, 4343, 5506, 6730, 8443, 10296, 12786, 15531, 19161, 23161, 28374, 34201, 41621, 49975, 60513, 72385, 87200, 103999, 124670, 148209
Offset: 0
Examples
For n = 6 the partitions of 6 contain four "emergent" parts: (3), (4), (2), (2), so a(6) = 4. See below the location of the emergent parts. 6 (3) + 3 (4) + 2 (2) + (2) + 2 5 + 1 3 + 2 + 1 4 + 1 + 1 2 + 2 + 1 + 1 3 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 For a(10) = 22 see the link for the location of the 22 "emergent parts" (colored yellow and green) and the location of the 42 "filler parts" (colored blue) in the last section of the set of partitions of 10.
Links
Programs
-
Maple
b:= proc(n, i) option remember; local t, h; if n<0 then [0, 0, 0] elif n=0 then [0, 1, 0] elif i<2 then [0, 0, 0] else t:= b(n, i-1); h:= b(n-i, i); [t[1]+h[1]+h[2], t[2], t[3]+h[3]+h[1]] fi end: a:= n-> b(n, n)[3]: seq (a(n), n=0..50); # Alois P. Heinz, Oct 21 2011
-
Mathematica
b[n_, i_] := b[n, i] = Module[{t, h}, Which[n<0, {0, 0, 0}, n == 0, {0, 1, 0}, i<2 , {0, 0, 0}, True, t = b[n, i-1]; h = b[n-i, i]; Join [t[[1]] + h[[1]] + h[[2]], t[[2]], t[[3]] + h[[3]] + h[[1]] ]]]; a[n_] := b[n, n][[3]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)
Comments