A182705 Row sums of triangle A182701.
1, 4, 12, 28, 60, 114, 210, 360, 603, 970, 1529, 2340, 3536, 5222, 7620, 10944, 15555, 21816, 30343, 41740, 56994, 77132, 103684, 138312, 183450, 241696, 316764, 412776, 535340, 690750, 887499, 1135072, 1446060, 1834742, 2319555, 2921616, 3667921, 4589260
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Total /@ Table[n*PartitionsP[n-k], {n, 38}, {k, n}] // Flatten (* Robert Price, Jun 23 2020 *)
-
PARI
a000070(n) = sum(k=0, n, numbpart(k)); for(n=1, 100, print1(n*a000070(n - 1), ", ")) \\ Indranil Ghosh, Jun 08 2017
-
Python
from sympy import npartitions as p def a000070(n): return sum([p(k) for k in range(n + 1)]) def a(n): return n*a000070(n - 1) # Indranil Ghosh, Jun 08 2017
Formula
a(n) = n * A000070(n-1).
G.f.: x*f'(x), where f(x) = (x/(1 - x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Jun 08 2017