A182707 Sum of the parts of all partitions of n-1 plus the sum of the emergent parts of the partitions of n.
0, 1, 4, 11, 23, 46, 80, 138, 221, 351, 529, 801, 1161, 1685, 2380, 3355, 4624, 6375, 8623, 11658, 15538, 20664, 27163, 35660, 46330, 60082, 77288, 99197, 126418, 160802, 203246, 256381, 321700, 402781, 501962, 624332, 773235, 955776, 1177076, 1446762, 1772308
Offset: 1
Examples
For n = 6 the partitions of 6-1=5 are (5);(3+2);(4+1);(2+2+1);(3+1+1);(2+1+1+1);(1+1+1+1+1) and the sum of the parts give 35, the same as 5*7. By other hand the emergent parts of the partitions of 6 are (2+2);(4);(3) and the sum give 11, so a(6) = 35+11 = 46.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Jason Kimberley)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6)))/sqrt(n)). - Vaclav Kotesovec, Jan 03 2019, extended Jul 06 2019
Comments