cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182716 Number of 2's in all partitions of 2n that do not contain 1 as a part.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 27, 48, 82, 137, 225, 362, 572, 892, 1370, 2078, 3117, 4624, 6791, 9885, 14263, 20416, 29007, 40921, 57345, 79864, 110565, 152211, 208435, 283982, 385048, 519695, 698346, 934477, 1245439, 1653485, 2187108, 2882686, 3786497, 4957324, 6469625
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Crossrefs

Cf. A182742. Bisection of A182712.

Programs

  • Maple
    b:= proc(n,i) option remember; local r;
          if n<=0 or i<2 then 0
        elif i=2 then `if`(irem(n,2,'r')=0,r,0)
        else b(n,i-1) +b(n-i,i)
          fi
        end:
    a:= n-> b(2*n,2*n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 03 2010
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{q, r}, Which[n <= 0 || i<2, 0, i==2, {q, r} = QuotientRemainder[n, 2]; If[r==0, q, 0], True, b[n, i-1]+b[n-i, i]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Dec 03 2010