A182724 Sum of all parts of all partitions of n minus the number of partitions of n.
0, 2, 6, 15, 28, 55, 90, 154, 240, 378, 560, 847, 1212, 1755, 2464, 3465, 4752, 6545, 8820, 11913, 15840, 21042, 27610, 36225, 46992, 60900, 78260, 100386, 127820, 162516, 205260, 258819, 324576, 406230, 506022, 629195, 778932, 962555, 1185030
Offset: 1
Examples
a(7) = 90 = (7-1)*15 = 105 - 15, because the number of partitions of 7 is 15 and the sum of all parts of all partitions of 7 is 7*15 = 105.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a:= n-> (n-1) *combinat[numbpart](n): seq (a(n), n =1..50);
-
Mathematica
pnxt[n_]:=Module[{ps=IntegerPartitions[n]},Total[Flatten[ps]]- Length[ps]]; Array[pnxt,40] (* Harvey P. Dale, Jul 15 2011 *) Table[(n-1)PartitionsP[n],{n,40}] (* Harvey P. Dale, Jan 17 2015 *)
Comments