cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182734 Number of parts in all partitions of 2n that do not contain 1 as a part.

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 68, 123, 219, 382, 642, 1055, 1713, 2713, 4241, 6545, 9950, 14953, 22255, 32752, 47774, 69104, 99114, 141094, 199489, 280096, 390836, 542170, 747793, 1025912, 1400425, 1902267, 2572095, 3462556, 4641516, 6196830, 8241460, 10919755, 14416885
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Comments

Essentially this is a bisection (even part) of A138135.

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; local p,q;
          if n<0 then [0,0]
        elif n=0 then [1,0]
        elif i=1 then [0,0]
        else p, q:= b(n,i-1), b(n-i,i);
             [p[1]+q[1], p[2]+q[2]+q[1]]
          fi
        end:
    a:= n-> b(2*n, 2*n)[2]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 03 2010
  • Mathematica
    Table[Length[Flatten[DeleteCases[IntegerPartitions[2n],?(MemberQ[ #,1]&)]]], {n,0,40}] (* _Harvey P. Dale, Aug 08 2013 *)
    b[n_] := DivisorSigma[0, n]-1+Sum[(DivisorSigma[0, k]-1)*(PartitionsP[n-k] - PartitionsP[n-k-1]), {k, 1, n-1}]; a[0] = 0; a[n_] := b[2n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 07 2015 *)

Extensions

More terms from Alois P. Heinz, Dec 03 2010