cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182735 Number of parts in all partitions of 2n+1 that do not contain 1 as a part.

Original entry on oeis.org

0, 1, 3, 8, 20, 41, 80, 153, 271, 469, 795, 1305, 2102, 3336, 5190, 7968, 12090, 18104, 26821, 39371, 57220, 82472, 117958, 167405, 235945, 330425, 459803, 636142, 875307, 1197983, 1631470, 2211377, 2983695, 4008386, 5362831, 7146335, 9486834, 12548085, 16538651
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Crossrefs

Cf. A135010, A138121, A182734, A182743, A182747. Bisection (odd part) of A138135.

Programs

  • Maple
    b:= proc(n,i) option remember; local p,q;
          if n<0 then [0,0]
        elif n=0 then [1,0]
        elif i<2 then [0,0]
        else p, q:= b(n,i-1), b(n-i,i);
            [p[1]+q[1], p[2]+q[2]+q[1]]
          fi
        end:
    a:= n-> b(2*n+1, 2*n+1)[2]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 03 2010
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p, q}, Which[n<0, {0, 0}, n == 0, {1, 0}, i < 2, {0, 0}, True, {p, q} = {b[n, i-1], b[n-i, i]}; {p[[1]] + q[[1]], p[[2]] + q[[2]] + q[[1]]}]]; a[n_] := b[2*n+1, 2*n+1][[2]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Dec 03 2010