A182747 Bisection (odd part) of number of partitions that do not contain 1 as a part A002865.
0, 1, 2, 4, 8, 14, 24, 41, 66, 105, 165, 253, 383, 574, 847, 1238, 1794, 2573, 3660, 5170, 7245, 10087, 13959, 19196, 26252, 35717, 48342, 65121, 87331, 116600, 155038, 205343, 270928, 356169, 466610, 609237, 792906, 1028764, 1330772, 1716486, 2207851
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n,i) option remember; if n<0 then 0 elif n=0 then 1 elif i<2 then 0 else b(n, i-1) +b(n-i, i) fi end: a:= n-> b(2*n+1, 2*n+1): seq(a(n), n=0..40); # Alois P. Heinz, Dec 01 2010
-
Mathematica
f[n_] := Table[PartitionsP[2 k + 1] - PartitionsP[2 k], {k, 0, n}] (* George Beck, Aug 14 2011 *) (* also *) Table[Count[IntegerPartitions[2 n], p_ /; MemberQ[p, Length[p]]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *) b[n_, i_] := b[n, i] = Which[n<0, 0, n == 0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n+1, 2*n+1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Formula
a(n) = p(2*n+1)-p(2*n), where p is the partition function, A000041. - George Beck, Aug 14 2011
Extensions
More terms from Alois P. Heinz, Dec 01 2010
Comments