A335311 Coefficients of polynomials arising in the series expansion of the multiplicative inverse of an analytic function. Irregular triangle read by rows.
1, 1, 2, 2, 6, 12, 3, 24, 72, 24, 24, 4, 120, 480, 180, 360, 40, 120, 5, 720, 3600, 1440, 4320, 360, 2160, 720, 60, 240, 180, 6, 5040, 30240, 12600, 50400, 3360, 30240, 20160, 630, 5040, 3780, 7560, 84, 420, 840, 7
Offset: 0
Examples
The triangle starts (the refinement is indicated by square brackets): [0] 1; [1] 1; [2] 2, 2; [3] 6, 12, 3; [4] 24, 72, (24, 24), 4; [5] 120, 480, (180, 360), (40, 120), 5; [6] 720, 3600, (1440, 4320), (360, 2160, 720), (60, 240, 180), 6; [7] 5040, 30240, (12600, 50400), (3360, 30240, 20160), (630, 5040, 3780, 7560), (84, 420, 840), 7; [8] 40320, 282240, (120960, 604800), (33600, 403200, 403200), (6720, 80640, 60480, 241920, 40320), (1008, 10080, 20160, 20160, 30240), (112, 672, 1680, 1120), 8; The multivariate polynomials start: 1 x[0] 2*x[0]^2 + 2*x[1] 6*x[0]^3 + 12*x[0]*x[1] + 3*x[2] 24*x[0]^4 + 72*x[0]^2*x[1] + 24*x[0]*x[2] + 24*x[1]^2 + 4*x[3] 120*x[0]^5 + 480*x[0]^3*x[1] + 180*x[0]^2*x[2] + 360*x[0]*x[1]^2 + 40*x[0]*x[3] + 120*x[1]*x[2] + 5*x[4]
Crossrefs
Programs
-
Maple
A335311Triangle := proc(numrows) local ser, p, C, B, P; B(0) := 1; ser := series(1/B(s), s, numrows); C := [seq(expand(simplify(n!*coeff(ser,s,n))), n=0..numrows-1)]: P := subs(seq((D@@n)(B)(0)=n*x[n], n=1..numrows), C): for p in P do print(seq(abs(c), c=coeffs(sort(p)))) od end: A335311Triangle(8);
Comments