A182793 Number of n-colorings of the 8 X 8 X 8 triangular grid.
0, 0, 0, 6, 1031276544, 4826149802070660, 316827094291524894720, 1595091571660292411606250, 1592275064882420035249606656, 526249245643156296389047576104, 78022473527414400196098852126720, 6300701001267935948773824927446190
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Chromatic polynomial
- Wikipedia, Triangular grid graph
- Index entries for linear recurrences with constant coefficients, signature (37, -666, 7770, -66045, 435897, -2324784, 10295472, -38608020, 124403620, -348330136, 854992152, -1852482996, 3562467300, -6107086800, 9364199760, -12875774670, 15905368710, -17672631900, 17672631900, -15905368710, 12875774670, -9364199760, 6107086800, -3562467300, 1852482996, -854992152, 348330136, -124403620, 38608020, -10295472, 2324784, -435897, 66045, -7770, 666, -37, 1).
Crossrefs
Programs
-
Maple
a:= n-> n^36 -84*n^35 +3437*n^34 -91266*n^33 +1767948*n^32 -26626641*n^31 +324474230*n^30 -3287527515*n^29 +28241112564*n^28 -208720581316*n^27 +1342098781876*n^26 -7574085510428*n^25 +37773151152128*n^24 -167375021582772*n^23 +661739022592885*n^22 -2341944556478962*n^21 +7436934470326959*n^20 -21224613967949058*n^19 +54488667645973816*n^18 -125859887740997948*n^17 +261444368727996373*n^16 -487829426279117443*n^15 +816027319948726718*n^14 -1220298815193350831*n^13 +1625157969312740380*n^12 -1917859440184087949*n^11 +1992559474100473934*n^10 -1807335902805940076*n^9 +1415695106519940144*n^8 -943996557462968752*n^7 +525570615466126368*n^6 -237792323595423264*n^5 +84014216771282688*n^4 -21747100909979904*n^3 +3668087119290368*n^2 -302469084548608*n: seq(a(n), n=0..12);
-
PARI
a(n) = n*(n-1)*(n-2)^4*(n^30 -15*(5*n^20 -182*n^19 -73212*n^17 +968723*n^16 -10321679*n^15 +90965902*n^14 -42239514291692*n^5 +728948069669224)*n^9 -64240*n^27 +10138842074*n^22 -64422107890*n^21 +353781404418*n^20 -1692797609642*n^19 +7100833446102*n^18 -26231755759998*n^17 +85617623199383*n^16 -247408302649363*n^15 -1437889343008038*n^13 +2888477744794634*n^12 -5124456558208194*n^11 +8000185529836163*n^10 +12990665090694358*n^8 -13287807554341505*n^7 +11549829535832291*n^6 -8378308904565234*n^5 +4943464695686292*n^4 -2282977532565696*n^3 +775401219820384*n^2 -172542491602784*n +18904317784288) \\ - M. F. Hasler, Dec 02 2010
Formula
a(n) = n^36 -84*n^35 + ... (see Maple program).
a(n) = (n^30 + ... )*n*(n-1)*(n-2)^4 (see PARI program), therefore all terms are divisible by 6. - M. F. Hasler, Dec 02 2010
Comments