cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182794 Number of n-colorings of the 9 X 9 X 9 triangular grid.

Original entry on oeis.org

0, 0, 0, 6, 67849629696, 17497810918123218900, 21925009706068920874598400, 1045584233565048659578102256250, 6368832392862110714579731514351616, 9534235558912413569697852308677120776
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2010

Keywords

Comments

The 9 X 9 X 9 triangular grid has 9 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 45 vertices and 108 edges altogether.

Crossrefs

Programs

  • Maple
    a:= n-> n^45 -108*n^44 +5714*n^43 -197372*n^42 +5004951*n^41 -99331939*n^40 +1606376002*n^39 -21760175421*n^38+251900492473*n^37 -2529947375509*n^36 +22305591797446*n^35 -174257688976920*n^34 +1215408574487125*n^33 -7615215090082277*n^32 +43080094524111690*n^31 -220967851371444614*n^30 +1031210769134504204*n^29 -4391099235591937845*n^28 +17100876656070073880*n^27 -61022823409833058201*n^26
    +199812365243382363912*n^25 -600991376049390898992*n^24 +1661619908871238912196*n^23 -4224371709444972487708*n^22 +9875485316923894342417*n^21 -21221061699176359482887*n^20 +41886723683404956818991*n^19 -75858892195631057087330*n^18 +125862045971633675717554*n^17 -190930468100539717386672*n^16 +264149971345371552591904*n^15 -332242305634477726845448*n^14 +378446023463873654411519*n^13
    -388532455150677959308540*n^12 +357418193476328504707252*n^11 -292480744218652691170096*n^10 +210981642121913298294408*n^9 -132621489649268878766112*n^8 +71568787087815309389792*n^7 -32504434438954975091968*n^6 +12087094618713177654080*n^5 -3534893963007018617856*n^4 +762559875649969442816*n^3 -107896190008663345152*n^2 +7511367180771568640*n: seq(a(n), n=0..12);

Formula

a(n) = n^45 -108*n^44 + ... (see Maple program).