cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182796 Number of n-colorings of the 11 X 11 X 11 triangular grid.

Original entry on oeis.org

0, 0, 0, 6, 894839431299072, 2669547726944484045356192220, 3453061562403499837458734621479403520, 32534816367748624110581496623513688165161250, 13865643738325095813931525301368809527451487174656, 719243085838104840090332816450418348485262159478161912
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2010

Keywords

Comments

The 11 X 11 X 11 triangular grid has 11 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 66 vertices and 165 edges altogether.

Crossrefs

Programs

  • Maple
    a:= n-> n^66 -165*n^65 +13430*n^64 -718830*n^63 +28457415*n^62 -888623847*n^61 +22794225600*n^60 -493911980736*n^59 +9226616834936*n^58 -150915853835753*n^57 +2187810200892517*n^56 -28386731631190882*n^55 +332304034158619019*n^54 -3533226535570171926*n^53 +34313909582632869954*n^52 -305856530408381979601*n^51 +2512508789703297897295*n^50 -19089408783899171447224*n^49 +134562619568457264195163*n^48
    -882441314560383975170374*n^47 +5396523102436821589146163*n^46 -30840476493483204890335403*n^45 +165009710808610594759616084*n^44 -827914124972290242846288614*n^43 +3900932089129512379033249682*n^42 -17282292209365903724659563631*n^41 +72070311947250436580694965993*n^40 -283166145176179540399078790292*n^39 +1049069241527084408399974095750*n^38 -3667220337345620153484655187124*n^37
    +12102613021744672034697503592240*n^36 -37724138339405445177425698342523*n^35 +111095760575994820098618163390207*n^34 -309176068977052084408729303614893*n^33 +813185481965001199040935097964080*n^32 -2021374436814237148012243424806903*n^31 +4748186561462311698450896683155065*n^30 -10537422803434213322732080981201161*n^29 +22086052643134325938087794218181024*n^28
    -43699620756746667796067005960087177*n^27 +81574844104346290652888156183655294*n^26 -143561350684851401447755384461673931*n^25 +237980280375008015726322556682052877*n^24 -371206816676060485457461990985198956*n^23 +544170012342342058668596490042636752*n^22 -748657464524219415245225971665770397*n^21 +965053026942268357862711436169935542*n^20 -1163371795450218690971885318270471694*n^19
    +1308697520027710079307786302348771339*n^18 -1370319041971898252774123231153226918*n^17 +1331690339384350939067376866415236621*n^16 -1197068569703716329028295302490292938*n^15 +991428141596470240524919848774681738*n^14 -753054945934102362521837371999863872*n^13 +521731607147367465356546993487963024*n^12 -327563800253835254381288187488707872*n^11 +184908996556501805959894731292086336*n^10
    -92949398227453879699243734196772032*n^9 +41108507052047410428558518243062272*n^8 -15751620136596962785464735723309056*n^7 +5123987337580699585298644858115072*n^6 -1376145015411556644420090237028352*n^5 +292997762191812894902503923634176*n^4 -46372215676408895763951507652608*n^3 +4850060647318928018465677025280*n^2 -251433237032021534887746912256*n:
    seq(a(n), n=0..12);

Formula

a(n) = n^66 -165*n^65 + ... (see Maple program).