A182804 Number of 9-core partitions of n.
1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 33, 38, 50, 56, 72, 77, 96, 99, 142, 139, 177, 180, 228, 229, 288, 284, 357, 343, 430, 410, 519, 491, 615, 588, 745, 714, 832, 811, 1007, 939, 1152, 1077, 1310, 1215, 1456, 1426, 1686, 1580, 1887, 1778, 2137
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
9th column of A175595.
Programs
-
Maple
with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n,9), n=0..50);
-
Mathematica
A[n_, t_] := A[n, t] = If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d*t, d], {d, Divisors[j]}]*A[n - j, t], {j, 1, n}]/n] ; Table[A[n, 9], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
Formula
G.f.: Product_{i>=1} (1-x^(9*i))^9/(1-x^i).
Euler transform of period 9 sequence [1,1,1,1,1,1,1,1,-8, .. ].