A182805 Number of 10-core partitions of n.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 46, 57, 71, 85, 106, 121, 147, 165, 190, 242, 267, 302, 350, 400, 443, 511, 565, 638, 715, 774, 852, 964, 1038, 1135, 1253, 1372, 1482, 1650, 1785, 1878, 2098, 2234, 2411, 2625, 2819, 2963, 3249, 3393, 3600, 4004, 4181
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n,10), n=0..50);
-
Mathematica
A[n_, t_] := A[n, t] = Module[{d, j}, If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d t, d], {d, Divisors[j]}] A[n - j, t], {j, 1, n}]/n]]; Table[A[n, 10], {n, 0, 50}] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)
Formula
G.f.: Product_{i>=1} (1-x^(10*i))^10/(1-x^i).
Euler transform of period 10 sequence [1,1,1,1,1,1,1,1,1,-9, .. ].