cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182805 Number of 10-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 46, 57, 71, 85, 106, 121, 147, 165, 190, 242, 267, 302, 350, 400, 443, 511, 565, 638, 715, 774, 852, 964, 1038, 1135, 1253, 1372, 1482, 1650, 1785, 1878, 2098, 2234, 2411, 2625, 2819, 2963, 3249, 3393, 3600, 4004, 4181
Offset: 0

Views

Author

Alois P. Heinz, Dec 03 2010

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n,10), n=0..50);
  • Mathematica
    A[n_, t_] := A[n, t] = Module[{d, j}, If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d t, d], {d, Divisors[j]}] A[n - j, t], {j, 1, n}]/n]];
    Table[A[n, 10], {n, 0, 50}] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{i>=1} (1-x^(10*i))^10/(1-x^i).
Euler transform of period 10 sequence [1,1,1,1,1,1,1,1,1,-9, .. ].