cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182822 Exponential Riordan array, defining orthogonal polynomials related to permutations without double falls.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 12, 6, 1, 17, 53, 39, 10, 1, 70, 279, 260, 95, 15, 1, 349, 1668, 1914, 880, 195, 21, 1, 2017, 11341, 15330, 8554, 2380, 357, 28, 1, 13358, 86019, 134317, 87626, 29379, 5530, 602, 36, 1, 99377, 722664, 1277604, 954885, 372771, 84231, 11508, 954, 45, 1, 822041, 6655121, 13149441, 11061480, 4924515, 1292445, 211533, 22020, 1440, 55, 1
Offset: 0

Views

Author

Paul Barry, Dec 05 2010

Keywords

Comments

Inverse is the coefficient array for the orthogonal polynomials P(0,x) = 1, P(1,x) = x-1, P(n,x) = (x-n)*P(n-1,x) - (n-1)^2*P(n-2,x). Inverse is A182823. First column is A049774.

Examples

			Triangle begins
      1;
      1,     1;
      2,     3,      1;
      5,    12,      6,     1;
     17,    53,     39,    10,     1;
     70,   279,    260,    95,    15,    1;
    349,  1668,   1914,   880,   195,   21,   1;
   2017, 11341,  15330,  8554,  2380,  357,  28,  1;
  13358, 86019, 134317, 87626, 29379, 5530, 602, 36, 1;
Production matrix is
  1, 1;
  1, 2, 1;
  0, 4, 3,  1;
  0, 0, 9,  4,  1;
  0, 0, 0, 16,  5,  1;
  0, 0, 0,  0, 25,  6,  1;
  0, 0, 0,  0,  0, 36,  7,  1;
  0, 0, 0,  0,  0,  0, 49,  8,  1;
  0, 0, 0,  0,  0,  0,  0, 64,  9,   1;
  0, 0, 0,  0,  0,  0,  0,  0, 81,  10,  1;
  0, 0, 0,  0,  0,  0,  0,  0,  0, 100, 11, 1;
		

Programs

  • Mathematica
    dim = 11; M[n_, n_] = 1; M[n_ /; 0 <= n <= dim-1, k_ /; 0 <= k <= dim-1] := M[n, k] = M[n-1, k-1] + (k+1)*M[n-1, k] + (k+1)^2*M[n-1, k+1]; M[, ] = 0;
    Table[M[n, k], {n, 0, dim-1}, {k, 0, n}] (* Jean-François Alcover, Jun 18 2019 *)
  • Sage
    def A182822_triangle(dim):
        T = matrix(ZZ,dim,dim)
        for n in (0..dim-1): T[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                T[n,k] = T[n-1,k-1]+(k+1)*T[n-1,k]+(k+1)^2*T[n-1,k+1]
        return T
    A182822_triangle(9) # Peter Luschny, Sep 19 2012

Formula

Exponential Riordan array [exp(x/2)/(cos(sqrt(3)x/2)-sin(sqrt(3)x/2)/sqrt(3)), 2*sin(sqrt(3)x/2)/(sqrt(3)*cos(sqrt(3)x/2)-sin(sqrt(3)x/2))].
From Werner Schulte, Mar 27 2022: (Start)
T(n,k) = T(n-1,k-1) + (k+1) * T(n-1,k) + (k+1)^2 * T(n-1,k+1) for n > 0 with initial values T(0,0) = 1 and T(i,j) = 0 if j < 0 or i < j (see the Sage program below).
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k satisfy recurrence equation p(n,x) = (1+x) * (p(n-1,x) + p'(n-1,x)) + x * p"(n-1,x) for n > 0 with initial value p(0,x) = 1 where p' and p" are first and second derivative of p. (End)