cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182867 Triangle read by rows: row n gives coefficients in expansion of Product_{i=1..n} (x - (2i)^2), highest powers first.

Original entry on oeis.org

1, 1, -4, 1, -20, 64, 1, -56, 784, -2304, 1, -120, 4368, -52480, 147456, 1, -220, 16368, -489280, 5395456, -14745600, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400, 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400, 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400, 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2011

Keywords

Comments

These are scaled central factorial numbers (see the discussion in the Comments section of A008955). The coefficients in the expansion of Product_{i=1..n} (x - i^2) give A008955, and the coefficients in the expansion of Product_{i=1..n} (x - (2i+1)^2) give A008956.

Examples

			Triangle begins:
 1
 1, -4
 1, -20, 64
 1, -56, 784, -2304
 1, -120, 4368, -52480, 147456
 1, -220, 16368, -489280, 5395456, -14745600
 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400
 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400
 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
...
For example, for n=2, (x-4)(x-16) = x^2 - 20x + 64 => [1, -20, 64].
		

Crossrefs

Cf. A008955, A008956. This triangle is formed from the even-indexed rows of A182971 (the odd-indexed rows give A008956).
Cf. A160563.

Programs

  • Maple
    Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
    else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
    for n from 0 to 10 do
    t1:=eval(Q(2*n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od:
    # Using a bivariate generating function (adding a superdiagonal 1,0,0, ...):
    gf := (t + sqrt(1 + t^2))^x:
    ser := series(gf, t, 20): ct := n -> coeff(ser, t, n):
    T := (n, k) -> n!*coeff(ct(n), x, n - k):
    EvenPart := (T, len) -> local n, k;
    seq(print(seq(T(n, k), k = 0..n, 2)), n = 0..2*len-1, 2):
    EvenPart(T, 6);  # Peter Luschny, Mar 03 2024

Formula

Given a (0, 0)-based triangle U we call the triangle [U(n, k), k=0..n step 2, n=0..len step 2] the 'even subtriangle' of U. This triangle is the even subtriangle of U(n, k) = n! * [x^(n-k)] [t^n] (t + sqrt(1 + t^2))^x, albeit adding a superdiagonal 1, 0, 0, ... See A160563 for the odd subtriangle. - Peter Luschny, Mar 03 2024