A002455
Central factorial numbers: unsigned 1st subdiagonal of A182867.
Original entry on oeis.org
0, 1, 20, 784, 52480, 5395456, 791691264, 157294854144, 40683662475264, 13288048674471936, 5349739088314368000, 2603081566154391552000, 1506057980251484454912000, 1021944601582419125993472000
Offset: 0
(arcsin x)^4 = x^4 + 2/3*x^6 + 7/15*x^8 + 328/945*x^10 + ...
- B. Berndt, Ramanujan's Notebooks, Part I, page 263.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
List([0..20], n-> 4^(n-1)*(Factorial(n))^2*Sum([1..n], k-> 1/k^2)); # G. C. Greubel, Jul 04 2019
-
[0] cat [4^(n-1)*(Factorial(n))^2*(&+[1/k^2: k in [1..n]]): n in [1..20]]; // G. C. Greubel, Jul 04 2019
-
A002455 := proc(n)
arcsin(x)^4;
coeftayl(%,x=0,2*n+2)*(2*n+2)!/4! ;
end proc:
seq(A002455(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
-
nmax = 13; coes = CoefficientList[ Series[ ArcSin[x]^4, {x, 0, 2*nmax + 2}], x]* Range[0, 2*nmax + 2]!/24; a[n_] := coes[[2*n + 3]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 08 2011 *)
Table[4^(n-1)*(n!)^2*HarmonicNumber[n,2], {n,0,20}] (* G. C. Greubel, Jul 04 2019 *)
-
a(n)=if(n<0,0,(2*n+2)!*polcoeff(asin(x+O(x^(2*n+3)))^4/4!,2*n+2))
-
a(n)=-(-1)^n*polcoeff(prod(k=0,2*n,x+2*k-2*n),3)
-
[4^(n-1)*(factorial(n))^2*sum(1/k^2 for k in (1..n)) for n in (0..20)] # G. C. Greubel, Jul 04 2019
More terms from Joe Keane (jgk(AT)jgk.org)
A049033
Central factorial numbers: unsigned 2nd subdiagonal of A182867.
Original entry on oeis.org
1, 56, 4368, 489280, 75851776, 15658639360, 4165906530304, 1390437378293760, 569462999991975936, 280969831084430721024, 164441704270786486861824, 112668650067303149573505024
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(arcsin x)^6 = x^6 + x^8 + 13/15*x^10 + 139/189*x^12 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
-
A049033 := proc(n)
arcsin(x)^6;
coeftayl(%,x=0,2*n+6)*(2*n+6)!/6! ;
end proc:
seq(A049033(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
A008955
Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 4;
1, 14, 49, 36;
1, 30, 273, 820, 576;
...
- B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Alois P. Heinz, Rows n = 0..100, flattened (first 51 rows from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- R. H. Boels, Three particle superstring amplitudes with massive legs, arXiv preprint arXiv:1201.2655 [hep-th], 2012.
- R. H. Boels and T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989).
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arxiv:1408.0767 [math-ph], 2014.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Toshiki Matsusaka, Applications of Faà di Bruno's formula to partition traces, arXiv:2507.00404 [math.NT], 2025. See p. 5.
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- S. Shadrin, L. Spitz, and D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc., II. Ser. 86, No. 2, 407-432 (2012), Corollary 7.5.
Appears in
A160464 (Eta triangle),
A160474 (Zeta triangle),
A160479 (ZL(n)),
A161739 (RSEG2 triangle),
A161742,
A161743,
A002195,
A002196,
A162440 (EG1 matrix),
A162446 (ZG1 matrix) and
A163927. -
Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
-
T:= function(n,k)
if k=0 then return 1;
elif k=n then return (Factorial(n))^2;
else return n^2*T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
-
a008955 n k = a008955_tabl !! n !! k
a008955_row n = a008955_tabl !! n
a008955_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 1
-- Reinhard Zumkeller, Dec 24 2013
-
T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
[T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
-
nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
t1 := proc(n,k)
sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
end proc: # Mircea Merca, Apr 02 2012
# third Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1,
add(T(j-1, k-1)*j^2, j=1..n))
end:
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Feb 19 2022
-
t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
(* Jean-François Alcover, May 30 2011, after recurrence formula *)
-
T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
-
T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
-
# This triangle is (0,0)-based.
def A008955(n, k) :
if k==0 : return 1
if k==n : return factorial(n)^2
return n^2*A008955(n-1, k-1) + A008955(n-1, k)
for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
There's an error in the last column of Riordan's table (change 46076 to 21076).
Discussion of Riordan's definition of central factorial numbers added by
N. J. A. Sloane, Feb 01 2011
A182971
Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.
Original entry on oeis.org
1, 1, -1, 1, -4, 1, -10, 9, 1, -20, 64, 1, -35, 259, -225, 1, -56, 784, -2304, 1, -84, 1974, -12916, 11025, 1, -120, 4368, -52480, 147456, 1, -165, 8778, -172810, 1057221, -893025, 1, -220, 16368, -489280, 5395456, -14745600, 1, -286, 28743, -1234948, 21967231, -128816766, 108056025, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
Offset: 0
Triangle begins:
1
1, -1
1, -4
1, -10, 9
1, -20, 64
1, -35, 259, -225
1, -56, 784, -2304
1, -84, 1974, -12916, 11025
1, -120, 4368, -52480, 147456
1, -165, 8778, -172810, 1057221, -893025
1, -220, 16368, -489280, 5395456, -14745600
...
E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.
-
Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
for n from 0 to 12 do
t1:=eval(Q(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od:
A160563
Table of the number of (n,k)-Riordan complexes, read by rows.
Original entry on oeis.org
1, 1, 1, 9, 10, 1, 225, 259, 35, 1, 11025, 12916, 1974, 84, 1, 893025, 1057221, 172810, 8778, 165, 1, 108056025, 128816766, 21967231, 1234948, 28743, 286, 1, 18261468225, 21878089479, 3841278805, 230673443, 6092515, 77077, 455, 1, 4108830350625, 4940831601000
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 9, 10, 1;
[3] 225, 259, 35, 1;
[4] 11025, 12916, 1974, 84, 1;
[5] 893025, 1057221, 172810, 8778, 165, 1;
[6] 108056025, 128816766, 21967231, 1234948, 28743, 286, 1;
.
For row 3: F(x) := 1/cos(x). Then 225*F(x) + 259*(d/dx)^2(F(x)) + 35*(d/dx)^4(F(x)) + (d/dx)^6(F(x)) = 720*(1/cos(x))^7, where F^(r) denotes the r-th derivative of F(x).
-
t := proc(n,k) option remember ; expand(x*mul(x+n/2-i,i=1..n-1)) ; coeftayl(%,x=0,k) ; end:
v := proc(n,k) option remember ; 4^(n-k)*t(2*n+1,2*k+1) ; end:
A160563 := proc(n,k) abs(v(n,k)) ; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A160563(n,k)) ; od: od: # R. J. Mathar, May 20 2009
# Using a bivariate generating function (albeit generating signed terms):
gf := (t + sqrt(1 + t^2))^x: ser := series(gf, t, 20):
ct := n -> coeff(ser, t, n): T := (n, k) -> n!*coeff(ct(n), x, k):
OddPart := (T, len) -> local n, k;
seq(print(seq(T(n, k), k = 1..n, 2)), n = 1..2*len, 2):
OddPart(T, 6); # Peter Luschny, Mar 03 2024
-
t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n - 1)!!)^2; t[n_, k_] := t[n, k] = (2*n - 1)^2*t[n - 1, k - 1] + t[n - 1, k];
T[n_, k_] := t[n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar's comment *)
Showing 1-5 of 5 results.
Comments