A181888
Second column of triangle in A182971.
Original entry on oeis.org
0, 0, 9, 64, 259, 784, 1974, 4368, 8778, 16368, 28743, 48048, 77077, 119392, 179452, 262752, 375972, 527136, 725781, 983136, 1312311, 1728496, 2249170, 2894320, 3686670, 4651920, 5818995, 7220304, 8892009, 10874304, 13211704, 15953344, 19153288, 22870848, 27170913, 32124288, 37808043, 44305872, 51708462, 60113872
Offset: 1
-
CoefficientList[Series[x^3(9+x)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,0,0,9,64,259,784},50] (* Harvey P. Dale, Jul 03 2013 *)
A184878
Third column (negated) of triangle in A182971.
Original entry on oeis.org
0, 0, 0, 0, 225, 2304, 12916, 52480, 172810, 489280, 1234948, 2846272, 6092515, 12263680, 23434840, 42828032, 75296468, 127959680, 211022360, 338814080, 531091781, 814651904, 1225304300, 1810265600, 2631035550, 3766825920, 5318617980, 7413931200, 10212392775, 13912204800, 18757613424, 25047492096, 33145159080, 43489557760, 56607936880, 73130176768, 93804916777, 119517648640, 151310950180, 190407043840
Offset: 1
A184877
a(n) = n^2*(n-2)^2*(n-4)^2*...*(1 or 2)^2.
Original entry on oeis.org
1, 1, 4, 9, 64, 225, 2304, 11025, 147456, 893025, 14745600, 108056025, 2123366400, 18261468225, 416179814400, 4108830350625, 106542032486400, 1187451971330625, 34519618525593600, 428670161650355625, 13807847410237440000, 189043541287806830625, 6682998146554920960000, 100004033341249813400625
Offset: 0
a(0) = Empty product = 1;
a(1) = 1^2 = 1;
a(2) = 2^2 = 4;
a(3) = 3^2*1^2 = 9;
a(4) = 4^2*2^2 = 64;
a(5) = 5^2*3^2*1^2 = 225;
...
-
[1] cat [(&*[(n-2*k)^2: k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Oct 14 2018
-
Table[Product[(n-2*k)^2, {k,0,Floor[(n-1)/2]}], {n,0,50}] (* G. C. Greubel, Oct 14 2018 *)
-
vector(100, n, n--; prod(k=0, (n-1)\2, (n-2*k)^2)) \\ Altug Alkan, Oct 29 2015
-
first(n) = {if(n<2, return(vector(n, i, 1))); my(res = vector(n), i = 3); res[1] = res[2] = 1; while(i<=n, res[i] = res[i-2]*(i-1)^2; i++) ;res} \\ David A. Corneth, Aug 03 2017
A121408
Triangle T(n,k) defined by the generating function: exp(y*arcsin(x))-1 = Sum_{n>=1} (Sum_{k=1..n} T(n,k)*y^k)*x^n/n!.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 9, 0, 10, 0, 1, 0, 64, 0, 20, 0, 1, 225, 0, 259, 0, 35, 0, 1, 0, 2304, 0, 784, 0, 56, 0, 1, 11025, 0, 12916, 0, 1974, 0, 84, 0, 1, 0, 147456, 0, 52480, 0, 4368, 0, 120, 0, 1, 893025, 0, 1057221, 0, 172810, 0, 8778, 0, 165, 0, 1, 0, 14745600, 0
Offset: 1
Triangle starts:
1;
0,1;
1,0,1;
0,4,0,1;
9,0,10,0,1;
0,64,0,20,0,1;
Row polynomials R(6,x) = x^2*(x^2 + 2^2)*(x^2 + 4^2) = 64*x^2 + 20*x^4 + x^6 and
R(7,x) = x*(x^2 + 1)*(x^2 + 3^2)*(x^2 + 5^2) = 225*x + 259*x^3 + 35*x^5 + x^7. - _Peter Bala_, Aug 29 2012
- B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
-
g:=exp(y*arcsin(x))-1: gser:=simplify(series(g,x=0,15)): for n from 1 to 12 do P[n]:=sort(n!*coeff(gser,x,n)) od: for n from 1 to 12 do seq(coeff(P[n],y,k),k=1..n) od; # yields sequence in triangular form
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n::odd,0,doublefactorial(n-1)^2), 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[OddQ[#], 0, (# - 1)!!^2] &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
A182867
Triangle read by rows: row n gives coefficients in expansion of Product_{i=1..n} (x - (2i)^2), highest powers first.
Original entry on oeis.org
1, 1, -4, 1, -20, 64, 1, -56, 784, -2304, 1, -120, 4368, -52480, 147456, 1, -220, 16368, -489280, 5395456, -14745600, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400, 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400, 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400, 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
Offset: 0
Triangle begins:
1
1, -4
1, -20, 64
1, -56, 784, -2304
1, -120, 4368, -52480, 147456
1, -220, 16368, -489280, 5395456, -14745600
1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400
1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400
1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
...
For example, for n=2, (x-4)(x-16) = x^2 - 20x + 64 => [1, -20, 64].
- T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541 [math-ph], 2014.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767 [math-ph], 2014.
- T. L. Curtright, More on Rotations as Spin Matrix Polynomials, arXiv preprint arXiv:1506.04648 [math-ph], 2015.
-
Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
for n from 0 to 10 do
t1:=eval(Q(2*n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od:
# Using a bivariate generating function (adding a superdiagonal 1,0,0, ...):
gf := (t + sqrt(1 + t^2))^x:
ser := series(gf, t, 20): ct := n -> coeff(ser, t, n):
T := (n, k) -> n!*coeff(ct(n), x, n - k):
EvenPart := (T, len) -> local n, k;
seq(print(seq(T(n, k), k = 0..n, 2)), n = 0..2*len-1, 2):
EvenPart(T, 6); # Peter Luschny, Mar 03 2024
Showing 1-5 of 5 results.
Comments