cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181889 Bisection of A181888.

Original entry on oeis.org

0, 64, 784, 4368, 16368, 48048, 119392, 262752, 527136, 983136, 1728496, 2894320, 4651920, 7220304, 10874304, 15953344, 22870848, 32124288, 44305872, 60113872, 80364592, 106004976, 138125856, 177975840, 226975840, 286734240, 359062704, 445992624, 549792208, 672984208, 818364288, 989020032, 1188350592, 1420086976, 1688312976, 1997486736, 2352462960, 2758515760, 3221362144, 3747186144
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2011

Keywords

Comments

These are scaled central factorial numbers.

Crossrefs

A bisection of A181888. Cf. A001823.

A001823 Central factorial numbers: column 2 in triangle A008956.

Original entry on oeis.org

0, 9, 259, 1974, 8778, 28743, 77077, 179452, 375972, 725781, 1312311, 2249170, 3686670, 5818995, 8892009, 13211704, 19153288, 27170913, 37808043, 51708462, 69627922, 92446431, 121181181, 157000116, 201236140, 255401965, 321205599, 400566474, 495632214
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A bisection of A181888.
Column 2 in triangle A008956.

Programs

  • Maple
    A001823:=-(9+196*z+350*z**2+84*z**3+z**4)/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[1/90*n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n + 7), {n, 40}] (* Stefan Steinerberger, Apr 15 2006 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0,9,259,1974,8778,28743,77077},30] (* Harvey P. Dale, Jun 09 2013 *)

Formula

a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n+7)/90.
If we replace n with n-1/2 in this formula we get 16*A000586(n).
G.f.: z*(9+196*z+350*z**2+84*z**3+z**4)/(1-z)^7.
a(1)=0, a(2)=9, a(3)=259, a(4)=1974, a(5)=8778, a(6)=28743, a(7)=77077, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Jun 09 2013

Extensions

More terms from Stefan Steinerberger, Apr 15 2006

A182971 Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.

Original entry on oeis.org

1, 1, -1, 1, -4, 1, -10, 9, 1, -20, 64, 1, -35, 259, -225, 1, -56, 784, -2304, 1, -84, 1974, -12916, 11025, 1, -120, 4368, -52480, 147456, 1, -165, 8778, -172810, 1057221, -893025, 1, -220, 16368, -489280, 5395456, -14745600, 1, -286, 28743, -1234948, 21967231, -128816766, 108056025, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2011

Keywords

Comments

These are scaled versions of the central factorial numbers in A008955 and A008956.
Even-indexed rows give A182867, odd-indexed rows give A008956.
A121408 is an unsigned and aerated version of the row reverse of this triangle. - Peter Bala, Aug 29 2012

Examples

			Triangle begins:
1
1, -1
1, -4
1, -10, 9
1, -20, 64
1, -35, 259, -225
1, -56, 784, -2304
1, -84, 1974, -12916, 11025
1, -120, 4368, -52480, 147456
1, -165, 8778, -172810, 1057221, -893025
1, -220, 16368, -489280, 5395456, -14745600
...
E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.
		

Crossrefs

Even-indexed rows give A182867, odd-indexed rows give A008956.
Column 1,4,10,20, ... is A000292. The next two columns give A181888, A184878. The last diagonal is A184877.

Programs

  • Maple
    Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
    else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
    for n from 0 to 12 do
    t1:=eval(Q(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od:

Formula

For n even, let Q(n) = Product_{i=1..n/2} (x - (2*i)^2) and for n odd let Q(n) = Product_{i=0..(n-1)/2} (x - (2i+1)^2). n-th row of triangle gives coefficients in expansion of Q(n).

A108684 a(n) = (n+1)*(n+2)*(n+3)*(19*n^3 + 111*n^2 + 200*n + 120)/720.

Original entry on oeis.org

1, 15, 93, 372, 1141, 2926, 6594, 13476, 25509, 45397, 76791, 124488, 194649, 295036, 435268, 627096, 884697, 1224987, 1667953, 2237004, 2959341, 3866346, 4993990, 6383260, 8080605, 10138401, 12615435, 15577408, 19097457, 23256696
Offset: 0

Views

Author

Emeric Deutsch, Jun 19 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 10).

Programs

  • Maple
    a:=n->(n+1)*(n+2)*(n+3)*(19*n^3+111*n^2+200*n+120)/720: seq(a(n),n=0..33);
  • Mathematica
    Table[(n + 1) (n + 2) (n + 3) (19 n^3 + 111 n^2 + 200 n + 120)/720, {n, 0, 29}] (* or *)
    CoefficientList[Series[(1 + 8 x + 9 x^2 + x^3)/(1 - x)^7, {x, 0, 29}], x] (* or *)
    Table[Sum[Binomial[(n + 1 - k) + 1, 2] Apply[Subtract, Map[Binomial[# + 2, 3] &, {n + 1, k}]], {k, 0, n}], {n, 0, 29}] (* Michael De Vlieger, Jun 08 2017 *)

Formula

G.f.: (1 + 8*x + 9*x^2 + x^3)/(1-x)^7.
a(n) = Sum_{k=0...n} A000217(n+1-k) * (A000292(n+1) - A000292(k)). - J. M. Bergot, Jun 07 2017
a(n) = A050405(n) + A181888(n+1). - R. J. Mathar, Jul 22 2022
Showing 1-4 of 4 results.