A182895 Number of (1,0)-steps at level 0 in all weighted lattice paths in L_n.
0, 1, 3, 7, 19, 50, 130, 341, 893, 2337, 6119, 16020, 41940, 109801, 287463, 752587, 1970299, 5158310, 13504630, 35355581, 92562113, 242330757, 634430159, 1660959720, 4348449000, 11384387281, 29804712843, 78029751247, 204284540899
Offset: 0
Keywords
Examples
a(3) = 7. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; they contain 0+0+2+2+3=7 (1,0)-steps at level 0.
Links
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
- E. Munarini, N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
- Index entries for linear recurrences with constant coefficients, signature (2,1,2,-1)
Crossrefs
Cf. A182893.
Programs
-
Maple
G:=z*(1+z)/(1+z+z^2)/(1-3*z+z^2): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..28);
-
Mathematica
LinearRecurrence[{2,1,2,-1},{0,1,3,7},30] (* Harvey P. Dale, Jan 05 2022 *)
Formula
a(n) = Sum_{k>=0} k*A182893(n,k).
G.f.: z(1+z)/[(1+z+z^2)(1-3z+z^2)].
Comments