A182920 Denominators of an asymptotic series for the factorial function.
1, 1, 144, 6480, 41472, 6531840, 1343692800, 1881169920, 5417769369600, 2011346878464000, 5461111524556800, 15060965425938432000, 11678040884112261120000, 15181453149345939456000, 1987390230459832074240000, 585336107626182041665536000000
Offset: 0
Examples
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -23/6480, G_4 = 5/41472.
Links
- Peter Luschny, Approximations to the factorial function, Factorial Function.
- W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
- Eric Weisstein's World of Mathematics, Stirling's Approximation.
Crossrefs
Cf. A182919.
Programs
-
Maple
CoefDenom := f -> denom([1,seq(coeff(convert(series(f,n=infinity,20), polynom),n^(-k)),k=1..16)]): CoefDenom(n!/(n^n/exp(n)*sqrt(2*Pi)*sqrt(n+1/6)));
-
Mathematica
a[n_] := SeriesCoefficient[ x!/(x^x/Exp[x]*Sqrt[2*Pi]*Sqrt[x+1/6]) /. x -> 1/y, {y, 0, n}]; Table[a[n] // Denominator, {n, 0, 15}] (* Jean-François Alcover, Feb 05 2014 *)
Formula
Let G = Sum_{k>=0} G[k]/n^k, then n! ~ sqrt(2Pi(n+1/6))*(n/e)^n*G.
Comments