cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277000 Numerators of an asymptotic series for the Gamma function (even power series).

Original entry on oeis.org

1, -1, 19, -2561, 874831, -319094777, 47095708213409, -751163826506551, 281559662236405100437, -49061598325832137241324057, 5012066724315488368700829665081, -26602063280041700132088988446735433, 40762630349420684160007591156102493590477
Offset: 0

Views

Author

Peter Luschny, Sep 25 2016

Keywords

Comments

Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*((y/E)*Sum_{k>=0} r(k)/y^(2*k))^y as x -> oo and r(k) = A277000(k)/A277001(k) (see example 6.1 in the Wang reference).

Examples

			The underlying rational sequence starts:
1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
		

Crossrefs

Cf. A001163/A001164 (Stirling), A182935/A144618 (De Moivre), A005146/A005147 (Stieltjes), A090674/A090675 (Lanczos), A181855/A181856 (Nemes), A182912/A182913 (NemesG), A182916/A182917 (Wehmeier), A182919/A182920 (Gosper), A182914/A182915, A277002/A277003 (odd power series).
Cf. A276667/A276668 (the arguments of the Bell polynomials).

Programs

  • Maple
    b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k,1/2), k=2..n))/n!:
    A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
    # Alternatively the rational sequence by recurrence:
    R := proc(n) option remember; local k; `if`(n=0, 1,
    add(bernoulli(2*m+2,1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
    seq(numer(R(n)), n=0..12); # Peter Luschny, Sep 30 2016
  • Mathematica
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
    a[n_] := Numerator[b[2n]];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)

Formula

a(n) = numerator(b(2*n)) with b(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = k!*Bernoulli(k,1/2)/(k*(k-1)) and Y_{n} the complete Bell polynomials.
The rational numbers have the recurrence r(n) = (1/(2*n))*Sum_{m=0..n-1} Bernoulli(2*m+2,1/2)*r(n-m-1)/(2*m+1) for n>=1, r(0)=1. - Peter Luschny, Sep 30 2016

A182919 Numerators of an asymptotic series for the factorial function.

Original entry on oeis.org

1, 0, 1, -23, 5, 4939, 11839, -1110829, -14470283, 1684880593181, 13113784231, -28792751815367863, -40127106428444687, 97116294357644526719, 15137700541235610329, -17271137929251359193013081753, -622005606550391960056009
Offset: 0

Views

Author

Peter Luschny, Mar 11 2011

Keywords

Comments

G_n = A182919(n)/A182920(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. It is a generalization of Gosper's approximation.

Examples

			G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -23/6480, G_4 = 5/41472.
		

Crossrefs

Cf. A182920.

Programs

  • Maple
    CoefNumer := f -> numer([1,seq(coeff(convert(series(f,n=infinity,20), polynom),n^(-k)),k=1..16)]): CoefNumer(n!/(n^n/exp(n)*sqrt(2*Pi)*sqrt(n+1/6)));
  • Mathematica
    a[n_] := SeriesCoefficient[ x!/(x^x/Exp[x]*Sqrt[2*Pi]*Sqrt[x+1/6]) /. x -> 1/y, {y, 0, n}]; Table[a[n] // Numerator, {n, 0, 16}] (* Jean-François Alcover, Feb 05 2014 *)

Formula

Let G = Sum_{k>=0} G[k]/n^k, then n! ~ sqrt(2Pi(n+1/6))*(n/e)^n*G.
Showing 1-2 of 2 results.