A182930 Triangle read by rows: Number of set partitions of {1,2,..,n} such that |k| is a block and no block |m| with m < k exists, (1 <= n, 1 <= k <= n).
1, 1, 0, 2, 1, 1, 5, 3, 2, 1, 15, 10, 7, 5, 4, 52, 37, 27, 20, 15, 11, 203, 151, 114, 87, 67, 52, 41, 877, 674, 523, 409, 322, 255, 203, 162, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 715, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 3425
Offset: 1
Examples
T(4,2) = card({2|134, 2|3|14, 2|4|13}) = 3. [1] 1, [2] 1, 0, [3] 2, 1, 1, [4] 5, 3, 2, 1, [5] 15, 10, 7, 5, 4, [6] 52, 37, 27, 20, 15, 11, [-1-] [-2-] [-3-] [-4-] [-5-] [-6-]
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Luschny, Set partitions
Programs
-
Maple
T := proc(n, k) option remember; if n = 1 then 1 elif n = k then T(n-1,1) - T(n-1,n-1) else T(n-1,k) + T(n, k+1) fi end: A182930 := (n,k) -> T(n,k); seq(print(seq(A182930(n,k),k=1..n)),n=1..6);
-
Mathematica
T[n_, k_] := T[n, k] = Which[n == 1, 1, n == k, T[n-1, 1] - T[n-1, n-1], True, T[n-1, k] + T[n, k+1]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 22 2019 *)
Formula
Recursion: The value of T(n,k) is, if n < 0 or k < 0 or k > n undefined, else if n = 1 then 1 else if k = n then T(n-1,1) - T(n-1,n-1); in all other cases T(n,k) = T(n,k+1) + T(n-1,k).
Comments