cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182931 Generalized Bell numbers; square array read by ascending antidiagonals, A(n, k) for n >= 0 and k >= 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 5, 1, 0, 1, 15, 1, 0, 0, 1, 52, 4, 1, 0, 0, 1, 203, 11, 1, 0, 0, 0, 1, 877, 41, 1, 1, 0, 0, 0, 1, 4140, 162, 11, 1, 0, 0, 0, 0, 1, 21147, 715, 36, 1, 1, 0, 0, 0, 0, 1, 115975, 3425, 92, 1, 1, 0, 0, 0, 0, 0, 1, 678570, 17722, 491, 36, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Peter Luschny, Apr 05 2011

Keywords

Examples

			Array starts:
[k=      1       2       3       4       5]
[n=0]    1,      1,      1,      1,      1,
[n=1]    1,      0,      0,      0,      0,
[n=2]    2,      1,      0,      0,      0,
[n=3]    5,      1,      1,      0,      0,
[n=4]   15,      4,      1,      1,      0,
[n=5]   52,     11,      1,      1,      1,
[n=6]  203,     41,     11,      1,      1,
[n=7]  877,    162,     36,      1,      1,
[n=8] 4140,    715,     92,     36,      1,
   A000110,A000296,A006505,A057837,A057814, ...
		

Crossrefs

Row sums are A097147 for n >= 1.

Programs

  • Maple
    egf := k -> exp(exp(x)*(1-GAMMA(k,x)/GAMMA(k)));
    T := (n,k) -> n!*coeff(series(egf(k),x,n+1),x,n):
    seq(print(seq(T(n,k),k=1..8)),n=0..8);
  • Mathematica
    egf[k_] := Exp[Exp[x] (1 - Gamma[k, x]/Gamma[k])];
    T[n_, k_] := n! SeriesCoefficient[egf[k], {x, 0, n}];
    Table[T[n-k+1, k], {n, 0, 11}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 13 2019 *)

Formula

E.g.f.: exp(exp(x)*(1-Gamma(k,x)/Gamma(k))); Gamma(k,x) the incomplete Gamma function.