A293024 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!).
1, 1, 1, 1, 0, 2, 1, 0, 1, 5, 1, 0, 0, 1, 15, 1, 0, 0, 1, 4, 52, 1, 0, 0, 0, 1, 11, 203, 1, 0, 0, 0, 1, 1, 41, 877, 1, 0, 0, 0, 0, 1, 11, 162, 4140, 1, 0, 0, 0, 0, 1, 1, 36, 715, 21147, 1, 0, 0, 0, 0, 0, 1, 1, 92, 3425, 115975, 1, 0, 0, 0, 0, 0, 1, 1, 36, 491, 17722, 678570
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 0, 0, 0, 0, 0, 0, ... 2, 1, 0, 0, 0, 0, 0, 0, ... 5, 1, 1, 0, 0, 0, 0, 0, ... 15, 4, 1, 1, 0, 0, 0, 0, ... 52, 11, 1, 1, 1, 0, 0, 0, ... 203, 41, 11, 1, 1, 1, 0, 0, ... 877, 162, 36, 1, 1, 1, 1, 0, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add( A(n-j, k)*binomial(n-1, j-1), j=1+k..n)) end: seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Sep 28 2017
-
Mathematica
A[0, _] = 1; A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}]; A[, ] = 0; Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
-
Ruby
def ncr(n, r) return 1 if r == 0 (n - r + 1..n).inject(:*) / (1..r).inject(:*) end def A(k, n) ary = [1] (1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}} ary end def A293024(n) a = [] (0..n).each{|i| a << A(i, n - i)} ary = [] (0..n).each{|i| (0..i).each{|j| ary << a[i - j][j] } } ary end p A293024(20)
Formula
E.g.f. of column k: Product_{i>k} exp(x^i/i!).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k.
Comments