A182961 Triangle, read by rows, where terms in row n equal the partial sums of row n-1 with 1's inserted at positions [0,n,2n-1,3n-3,4n-6,5n-10,...,n(n+1)/2-1] for n>0, with T(0,0)=1.
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 5, 1, 1, 2, 4, 1, 5, 8, 1, 9, 1, 14, 1, 1, 2, 4, 8, 1, 9, 14, 22, 1, 23, 32, 1, 33, 1, 47, 1, 1, 2, 4, 8, 16, 1, 17, 26, 40, 62, 1, 63, 86, 118, 1, 119, 152, 1, 153, 1, 200, 1
Offset: 0
Examples
This triangle T(n,k), where k=0..n(n+1)/2 in row n>=0, begins: 1; (1),1; (1),1,(1),2; (1),1,2,(1),3,(1),5; (1),1,2,4,(1),5,8,(1),9,(1),14; (1),1,2,4,8,(1),9,14,22,(1),23,32,(1),33,(1),47; (1),1,2,4,8,16,(1),17,26,40,62,(1),63,86,118,(1),119,152,(1),153,(1),200; (1),1,2,4,8,16,32,(1),33,50,76,116,178,(1),179,242,328,446,(1),447,566,718,(1),719,872,(1),873,(1),1073; ... where row n is equal to the partial sums of terms in row n-1, with 1's inserted at positions [0,n,2n-1,3n-3,4n-6,5n-10,...,n(n+1)/2-1]. The row sums and rightmost border form sequence A129867, which equals the row sums of triangle A130469. Triangle A130469 begins: 1; 1, 1; 2, 2, 1; 6, 4, 3, 1; 24, 12, 6, 4, 1; 120, 48, 18, 8, 5, 1; 720, 240, 72, 24, 10, 6, 1; ... which has the same row sums as this triangle.
Links
- Paul D. Hanna, Rows n = 0..30, flattened.
Programs
-
PARI
{T(n,k)=local(A=[1],B); for(m=0,n, t=0;B=[]; for(j=0,#A-1, if(j==t*m-t*(t+1)/2, t+=1;B=concat(B,1)); B=concat(B,A[j+1])); A=Vec( Ser(B)/(1-x+O(x^#B)) ) ); if(k+1>#A, 0, B[k+1])} for(n=0,12,for(k=0,n*(n+1)/2,print1(T(n, k), ", ")); print(""))