A182977 Total number of parts that are neither the smallest part nor the largest part in all partitions of n.
0, 0, 0, 0, 0, 0, 1, 2, 6, 12, 22, 39, 66, 103, 159, 243, 352, 510, 721, 1011, 1391, 1903, 2557, 3436, 4549, 5999, 7824, 10187, 13132, 16886, 21544, 27414, 34657, 43703, 54797, 68558, 85328, 105963, 131028, 161664, 198710
Offset: 0
Keywords
Examples
For n = 6 the partitions of 6 are 6 5 + 1 4 + 2 4 + 1 + 1 3 + 3 3 + (2) + 1 .......... the "2" is the part that counts. 3 + 1 + 1 + 1 2 + 2 + 2 2 + 2 + 1 + 1 2 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 There is only one part which is neither the smallest part nor the largest part in all partitions of 6, so a(6) = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g := add(add((add(x^(i+j+k)/(1-x^k), k = i+1 .. j-1))/(mul(1-x^k, k = i .. j)), j = i+1 .. 80), i = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Dec 25 2015
Formula
G.f.: g(x) = Sum_{i>=1} Sum_{j>=i+1} (Sum_{k=i+1..j-1} x^{i+j+k}/(1-x^k)/Product_{k=i..j}(1-x^k)). - Emeric Deutsch, Dec 25 2015
a(n) = Sum_{k>=0} k*A265249(n,k). - Emeric Deutsch, Dec 25 2015
Extensions
a(12) corrected and more terms a(13)-a(40) from David Scambler, Jul 18 2011