A182984 Total number of parts that are not the smallest part in all partitions of n.
0, 0, 0, 1, 2, 6, 9, 19, 29, 48, 73, 114, 161, 241, 340, 479, 662, 917, 1237, 1678, 2231, 2965, 3901, 5114, 6629, 8588, 11036, 14129, 17983, 22823, 28790, 36238, 45381, 56674, 70502, 87453, 108077, 133259, 163762, 200747, 245378, 299261
Offset: 0
Keywords
Examples
a(5) = 6 because the partitions of 5 are [5], [(4),1], [(3),2], [(3),1,1], [(2),(2),1], [(2),1,1,1] and [1,1,1,1,1], containing a total of 6 parts that are not the smallest part (shown between parentheses).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g := sum((sum(x^(q+i)/(1-x^q), q = i+1 .. 80))/(product(1-x^q, q = i .. 80)), i = 1 .. 80): gser := series(g, x = 0,50): seq(coeff(gser, x, n), n = 0 .. 47); # Emeric Deutsch, Nov 14 2015
Formula
G.f.: g(x) = Sum(Sum(x^{q+i}/(1-x^q), q=i+1..infinity)/Product(1-x^q, q=i..infinity), i=1..infinity). - Emeric Deutsch, Nov 14 2015
a(n) = Sum(k*A264402(n,k), k>=1). - Emeric Deutsch, Dec 11 2015
Comments