cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A183035 G.f.: A(x) = x*(1-x^2)*Product_{n>=1} (1 + x^(4^n))^3.

Original entry on oeis.org

1, 0, -1, 0, 3, 0, -3, 0, 3, 0, -3, 0, 1, 0, -1, 0, 3, 0, -3, 0, 9, 0, -9, 0, 9, 0, -9, 0, 3, 0, -3, 0, 3, 0, -3, 0, 9, 0, -9, 0, 9, 0, -9, 0, 3, 0, -3, 0, 1, 0, -1, 0, 3, 0, -3, 0, 3, 0, -3, 0, 1, 0, -1, 0, 3, 0, -3, 0, 9, 0, -9, 0, 9, 0, -9, 0, 3, 0, -3, 0, 9, 0, -9, 0, 27, 0, -27, 0, 27, 0, -27, 0, 9, 0
Offset: 1

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Examples

			G.f.: A(x) = x - x^3 + 3*x^5 - 3*x^7 + 3*x^9 - 3*x^11 + x^13 - x^15 +...
		

Crossrefs

Cf. A183034.

Programs

  • PARI
    {a(n)=local(L4n=ceil(log(n+1)/log(4)));polcoeff(x*(1-x^2)*prod(k=1,L4n,1 + x^(4^k)+x*O(x^n))^3,n)}

Formula

a(2n) = 0.
Showing 1-1 of 1 results.