A183037 a(n) = A001511(n)*2^A001511(n) where A001511(n) equals the 2-adic valuation of 2n.
2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 384, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 896, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2
Offset: 1
Keywords
Examples
L.g.f.: A(x) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 + ... The g.f. of A183036 begins: exp(A(x)) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 + ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
Crossrefs
Cf. A183036.
Programs
-
Mathematica
Array[# 2^# &[IntegerExponent[#, 2] + 1] &, 93] (* Michael De Vlieger, Nov 06 2018 *)
-
PARI
{a(n)=valuation(2*n,2)*2^valuation(2*n,2)}
-
Python
def A183037(n): return (m:=n&-n)*m.bit_length()<<1 # Chai Wah Wu, Jul 12 2022
Formula
Logarithmic derivative of A183036.
Comments