cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183037 a(n) = A001511(n)*2^A001511(n) where A001511(n) equals the 2-adic valuation of 2n.

Original entry on oeis.org

2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 384, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 896, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2, 8, 2, 160, 2, 8, 2, 24, 2, 8, 2, 64, 2, 8, 2, 24, 2
Offset: 1

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Comments

2n/2^A001511(n) is odd for n >= 1, so that A001511(n) is logarithmic in nature.

Examples

			L.g.f.: A(x) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 + ...
The g.f. of A183036 begins:
exp(A(x)) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 + ...
		

Crossrefs

Cf. A183036.

Programs

  • Mathematica
    Array[# 2^# &[IntegerExponent[#, 2] + 1] &, 93] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    {a(n)=valuation(2*n,2)*2^valuation(2*n,2)}
    
  • Python
    def A183037(n): return (m:=n&-n)*m.bit_length()<<1 # Chai Wah Wu, Jul 12 2022

Formula

Logarithmic derivative of A183036.