cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183038 G.f.: exp( Sum_{n>=1} A051064(n)*3^A051064(n)*x^n/n ) where A051064(n) equals the 3-adic valuation of 3n.

Original entry on oeis.org

1, 3, 6, 15, 30, 51, 93, 156, 240, 387, 597, 870, 1311, 1920, 2697, 3873, 5448, 7422, 10278, 14016, 18636, 25098, 33402, 43548, 57333, 74757, 95820, 123780, 158637, 200391, 254778, 321798, 401451, 503490, 627915, 774726, 960156, 1184205, 1446873
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Comments

Compare to B(x), the g.f. of the number of partitions of 3n into powers of 3 (A005704):
B(x) = exp( Sum_{n>=1} 3^A051064(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(3^n)).

Examples

			G.f.: A(x) =  1 + 3*x + 6*x^2 + 15*x^3 + 30*x^4 + 51*x^5 + 93*x^6 +...
log(A(x)) = 3*x + 3*x^2/2 + 18*x^3/3 + 3*x^4/4 + 3*x^5/5 + 18*x^6/6 + 3*x^7/7 + 3*x^8/8 + 81*x^9/9 + 3*x^10/10 + 3*x^11/11 + 18*x^12/12 +...
G.f. satisfies A(x) = A(x^3)*G(x) where G(x) is the g.f. of A161809:
G(x) = 1 + 3*x + 6*x^2 + 12*x^3 + 21*x^4 + 33*x^5 + 51*x^6 +...
TRISECTIONS of g.f. begin:
T_0(x) = 1 + 15*x + 93*x^2 + 387*x^3 + 1311*x^4 + 3873*x^5 +...
T_1(x) = 3 + 30*x + 156*x^2 + 597*x^3 + 1920*x^4 + 5448*x^5 +...
T_2(x) = 6 + 51*x + 240*x^2 + 870*x^3 + 2697*x^4 + 7422*x^5 +...
where the ratios involve Fibonacci numbers:
T_1(x)/T_0(x) = 3*(1 - 5*x + 34*x^2 - 233*x^3 +...+ (-1)^n*Fibonacci(4n+1)*x^n +...);
T_2(x)/T_0(x) = 3*(2 - 13*x + 89*x^2 - 610*x^3 +...+ (-1)^n*Fibonacci(4n+3)*x^n +...).
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,valuation(3*m,3)*3^valuation(3*m,3)*x^m/m)+x*O(x^n)),n)}

Formula

G.f. satisfies: A(x) = (1-x^3)/(1-x)^3 * A(x^3)^2/A(x^9).
G.f. satisfies: A(x) = A(x^3)*G(x) where G(x) = G(x^3)*(1+x+x^2)/(1-x)^2 is the g.f. of A161809.
Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then:
T_1(x)/T_0(x) = 3*(1 + 2*x)/(1 + 7*x + x^2) and
T_2(x)/T_0(x) = 3*(2 + x)/(1 + 7*x + x^2).