A183065 Triangle defined by g.f.: Sum_{n>=0} (4*n)!/n!^4 * x^(2*n)*y^n/(1-x-x*y)^(4*n+1), read by rows.
1, 1, 1, 1, 26, 1, 1, 123, 123, 1, 1, 364, 3246, 364, 1, 1, 845, 25210, 25210, 845, 1, 1, 1686, 120135, 606500, 120135, 1686, 1, 1, 3031, 430941, 6082475, 6082475, 430941, 3031, 1, 1, 5048, 1277668, 38698856, 137915470, 38698856, 1277668, 5048, 1, 1, 7929
Offset: 0
Examples
G.f.: A(x,y) = 1/(1-x-xy) + 4!*x^2*y/(1-x-xy)^5 + (8!/2!^4)*x^4*y^2/(1-x-xy)^9 + (12!/3!^4)*x^6*y^3/(1-x-xy)^13 +... Triangle begins: 1; 1, 1; 1, 26, 1; 1, 123, 123, 1; 1, 364, 3246, 364, 1; 1, 845, 25210, 25210, 845, 1; 1, 1686, 120135, 606500, 120135, 1686, 1; 1, 3031, 430941, 6082475, 6082475, 430941, 3031, 1; 1, 5048, 1277668, 38698856, 137915470, 38698856, 1277668, 5048, 1; ...
Programs
-
PARI
{T(n,k)=polcoeff(polcoeff(sum(m=0,n,(4*m)!/m!^4*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(4*m+1)),n,x),k,y)}
Comments