cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183070 G.f.: A(x) = exp( Sum_{n>=1,k>=0} CATALAN(n,k)^2*x^(n+k)/n ), where CATALAN(n,k) = n*C(n+2*k-1,k)/(n+k) is the coefficient of x^k in C(x)^n and C(x) is the g.f. of the Catalan numbers.

Original entry on oeis.org

1, 1, 2, 8, 49, 380, 3400, 33469, 352763, 3914105, 45203847, 539095203, 6600723606, 82616454685, 1053503618516, 13650703465841, 179351890161617, 2385294488375623, 32066177447127597, 435218601202213040
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2010

Keywords

Comments

Compare the g.f. of this sequence to the g.f. of the Catalan numbers:
C(x) = exp( Sum_{n>=1,k>=0} C(n+k-1,k)^2*x^(n+k)/n ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 49*x^4 + 380*x^5 + 3400*x^6 +...
The logarithm of the g.f. (A183069) begins:
log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 163*x^4/4 + 1626*x^5/5 +...
and equals the series:
log(A(x)) = (1 + x + 2^2*x^2 + 5^2*x^3 + 14^2*x^4 +...)*x
+ (1 + 2^2*x + 5^2*x^2 + 14^2*x^3 + 42^2*x^4 +...)*x^2/2
+ (1 + 3^2*x + 9^2*x^2 + 28^2*x^3 + 90^2*x^4 +...)*x^3/3
+ (1 + 4^2*x + 14^2*x^2 + 48^2*x^3 + 165^2*x^4 +...)*x^4/4
+ (1 + 5^2*x + 20^2*x^2 + 75^2*x^3 + 275^2*x^4 +...)*x^5/5 +...
which consists of the squares of coefficients in powers of C(x),
where C(x) = 1 + x*C(x)^2 is g.f. of the Catalan numbers (A000108).
...
Compare the above series for log(A(x)) to log(C(x)):
log(C(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x
+ (1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 5^2*x^4 +...)*x^2/2
+ (1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x^3/3
+ (1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 35^2*x^4 +...)*x^4/4
+ (1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^5/5 +...
which consists of the squares of coefficients in powers of 1/(1-x).
		

Crossrefs

Cf. A183069 (log), A000108, A009766.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, (m*binomial(m+2*k-1,k)/(m+k))^2*x^k)*x^m/m)+x*O(x^n)), n)}