A183094 a(n) = number of powerful divisors d (excluding 1) of n.
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 3, 0, 0, 0, 2, 0
Offset: 1
Keywords
Examples
For n = 12, set of such divisors is {4}; a(12) = 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- D. Suryanarayana and R. Sitaramachandra Rao, The number of square-full divisors of an integer, Proc. Amer. Math. Soc. 34 (1972), 79-80.
Programs
-
Maple
f:= n -> convert(map(t->t[2], ifactors(n)[2]),`*`) - 1; # Robert Israel, Jul 14 2014
-
Mathematica
powerfulQ[n_] := Min[ Last@# & /@ FactorInteger[n]] > 1; f[n_] := Length@ Select[ Divisors@ n, powerfulQ]; Array[f, 105] (* Robert G. Wilson v, Jul 14 2014 *)
Formula
a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = k-1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)*zeta(3)/zeta(6) - 1 = A082695 - 1 = 0.9435964368... . - Amiram Eldar, Jul 30 2022
Comments