A183109 Triangle read by rows: T(n,m) = number of n X m binary matrices with no zero rows or columns (n >= 1, 1 <= m <= n).
1, 1, 7, 1, 25, 265, 1, 79, 2161, 41503, 1, 241, 16081, 693601, 24997921, 1, 727, 115465, 10924399, 831719761, 57366997447, 1, 2185, 816985, 167578321, 26666530801, 3776451407065, 505874809287625
Offset: 1
Examples
Triangle begins: 1; 1, 7; 1, 25, 265; 1, 79, 2161, 41503; 1, 241, 16081, 693601, 24997921; 1, 727, 115465, 10924399, 831719761, 57366997447; 1, 2185, 816985, 167578321, 26666530801, 3776451407065, 505874809287625; ...
Links
- Indranil Ghosh, Rows 1..50, flattened
- Ch. A. Charalambides, A problem of arrangements on chessboards and generalizations, Discrete Mathematics 27.2 (1979): 179-186. (Generalizations.)
- D. E. Knuth, Problem 11243, Am. Math. Montly 113 (8) (2006) page 759.
- John Riordan and Paul R. Stein, Arrangements on chessboards, Journal of Combinatorial Theory, Series A 12.1 (1972): 72-80. See Table page 78.
Crossrefs
Programs
-
Maple
A183109 := proc(n,m) add((-1)^j*binomial(m,j)*(2^(m-j)-1)^n,j=0..m) ; end proc: seq(seq(A183109(n,m),m=1..n),n=1..10) ; # R. J. Mathar, Dec 03 2015
-
Mathematica
Flatten[Table[Sum[ (-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}], {n, 1, 7}, {m, 1, n}]] (* Indranil Ghosh, Mar 14 2017 *)
-
PARI
tabl(nn) = {for(n=1, nn, for(m = 1, n, print1(sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n),", ");); print(););}; tabl(8); \\ Indranil Ghosh, Mar 14 2017
-
Python
import math f = math.factorial def C(n,r): return f(n)//f(r)//f(n - r) def T(n,m): return sum((-1)**j*C(m,j)*(2**(m - j) - 1)**n for j in range (m+1)) i=1 for n in range(1,21): for m in range(1, n+1): print(str(i)+" "+str(T(n, m))) i+=1 # Indranil Ghosh, Mar 14 2017
Formula
T(n,m) = Sum_{j=0..m}(-1)^j*C(m, j)*(2^(m-j)-1)^n.
Recursion: T(m,n) = Sum_{k=1..m} T(k,n-1)*C(m,k)*2^k - T(m,n-1).
From Robert FERREOL, Mar 14 2017: (Start)
T(n,m) = Sum_{i = 0 .. n,j = 0 ..m}(-1)^(n+m+i+j)*C(n,i)*C(m,j)*2^(i*j).
Inverse formula of: 2^(n*m) = Sum_{i = 0 .. n , j = 0 ..m} C(n,i)*C(m,j)*T(i,j). (End)
A019538(j) <= a(j). - Manfred Boergens, Jul 25 2021
Comments