cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183109 Triangle read by rows: T(n,m) = number of n X m binary matrices with no zero rows or columns (n >= 1, 1 <= m <= n).

Original entry on oeis.org

1, 1, 7, 1, 25, 265, 1, 79, 2161, 41503, 1, 241, 16081, 693601, 24997921, 1, 727, 115465, 10924399, 831719761, 57366997447, 1, 2185, 816985, 167578321, 26666530801, 3776451407065, 505874809287625
Offset: 1

Views

Author

Steffen Eger, Feb 01 2011

Keywords

Comments

T(n,m) = T(m,n) is also the number of complete alignments between two strings of sizes m and n, respectively; i.e. the number of complete matchings in a bipartite graph
From Manfred Boergens, Jul 25 2021: (Start)
The matrices in the definition are a superset of the matrices in the comment to A019538 by Manfred Boergens.
T(n,m) is the number of coverings of [n] by tuples (A_1,...,A_m) in P([n])^m with nonempty A_j, with P(.) denoting the power set (corrected for clarity by Manfred Boergens, May 26 2024). For the disjoint case see A019538.
For tuples with "nonempty" dropped see A092477 and A329943 (amendment by Manfred Boergens, Jun 24 2024). (End)

Examples

			Triangle begins:
  1;
  1,    7;
  1,   25,    265;
  1,   79,   2161,     41503;
  1,  241,  16081,    693601,    24997921;
  1,  727, 115465,  10924399,   831719761,   57366997447;
  1, 2185, 816985, 167578321, 26666530801, 3776451407065, 505874809287625;
  ...
		

Crossrefs

Cf. A218695 (same sequence with restriction m<=n dropped).
Cf. A058482 (this gives the general formula, but values only for m=3).
Main diagonal gives A048291.
Column 2 is A058481.

Programs

  • Maple
    A183109 := proc(n,m)
        add((-1)^j*binomial(m,j)*(2^(m-j)-1)^n,j=0..m) ;
    end proc:
    seq(seq(A183109(n,m),m=1..n),n=1..10) ; # R. J. Mathar, Dec 03 2015
  • Mathematica
    Flatten[Table[Sum[ (-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}], {n, 1, 7}, {m, 1, n}]] (* Indranil Ghosh, Mar 14 2017 *)
  • PARI
    tabl(nn) = {for(n=1, nn, for(m = 1, n, print1(sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n),", ");); print(););};
    tabl(8); \\ Indranil Ghosh, Mar 14 2017
    
  • Python
    import math
    f = math.factorial
    def C(n,r): return f(n)//f(r)//f(n - r)
    def T(n,m):
        return sum((-1)**j*C(m,j)*(2**(m - j) - 1)**n for j in range (m+1))
    i=1
    for n in range(1,21):
        for m in range(1, n+1):
            print(str(i)+" "+str(T(n, m)))
            i+=1 # Indranil Ghosh, Mar 14 2017

Formula

T(n,m) = Sum_{j=0..m}(-1)^j*C(m, j)*(2^(m-j)-1)^n.
Recursion: T(m,n) = Sum_{k=1..m} T(k,n-1)*C(m,k)*2^k - T(m,n-1).
From Robert FERREOL, Mar 14 2017: (Start)
T(n,m) = Sum_{i = 0 .. n,j = 0 ..m}(-1)^(n+m+i+j)*C(n,i)*C(m,j)*2^(i*j).
Inverse formula of: 2^(n*m) = Sum_{i = 0 .. n , j = 0 ..m} C(n,i)*C(m,j)*T(i,j). (End)
A019538(j) <= a(j). - Manfred Boergens, Jul 25 2021