A183115 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
0, 1, 3, 7, 19, 55, 159, 471, 1403, 4191, 12551, 37615, 112787, 338279, 1014703, 3043911, 9131435, 27393839, 82180823, 246541407, 739622595, 2218865335, 6656592255, 19969771063, 59909304539, 179727900415, 539183681191, 1617551013071, 4852652992755, 14557958907655, 43673876615503
Offset: 0
Keywords
References
- Uri Levy, "The Magnetic Tower of Hanoi", Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp. 173.
Links
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet to play The Magnetic Tower of Hanoi [Broken link]
Crossrefs
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
Programs
-
Mathematica
L1 = Root[-2 - # + #^3&, 1]; L2 = Root[-2 - # + #^3&, 3]; L3 = Root[-2 - # + #^3&, 2]; AP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 1]; BP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 3]; CP = Root[-2 - 9 # - 52 #^2 + 572 #^3&, 2]; a[0] = 0; a[n_] := (7/11) 3^(n-1) + AP (L1+1) L1^(n-1) + BP (L2+1) L2^(n-1) + CP (L3+1) L3^(n-1); Table[a[n] // Round, {n, 0, 30}] (* Jean-François Alcover, Dec 03 2018 *)
Formula
Recurrence Relations (a(n)=P636(n) as in referenced paper):
P636(n) = P636(n-1) + 2*P909(n-2) + 2*3^(n-3) ; n >= 3
Note: P909(n-2) refers to the integer sequence described by A183111.
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For n > 0: P636(n) = (7/11)*3^(n-1) + AP*(λ1+1)*λ1^(n-1) + BP*( λ2+1)*λ2^(n-1) + CP*(λ3+1)* λ3^(n-1)
G.f.: x*(1-3*x^2-4*x^3)/((1-3*x)*(1-x^2-2*x^3)). - Colin Barker, Jan 12 2012
Extensions
More terms from Jean-François Alcover, Dec 03 2018
Comments