A183118 Magnetic Tower of Hanoi, total number of moves, optimally solving the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
0, 1, 4, 11, 30, 83, 236, 687, 2026, 6023, 17984, 53819, 161254, 483451, 1449876, 4348903, 13045602, 39135119, 117402792, 352204467, 1056607454
Offset: 0
Keywords
References
- "The Magnetic Tower of Hanoi", Uri Levy, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Web applet, to play The Magnetic Tower of Hanoi
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-2,-5,6).
Crossrefs
A183117 is an "original" sequence describing the number of moves of disk number k, optimally solving the pre-colored puzzle at hand. The integer sequence listed above is the partial sums of the A183117 original sequence.
Programs
-
Mathematica
Join[{0}, LinearRecurrence[{4, -2, -2, -5, 6}, {1, 4, 11, 30, 83}, 20]] (* Jean-François Alcover, Jan 28 2019 *)
Formula
G.f. x*(-2*x^4-4*x^3-3*x^2+1)/(-6*x^5+5*x^4+2*x^3+2*x^2-4*x+1).
Recurrence Relations (a(n)=S606(n) as in referenced paper):
S606(n) = S636(n-1)+ S636(n-2)+ S909(n-2)+ 3^(n-2)+ 2; n >= 2; S909(0) = 0; S636(0) = 0
Closed-Form Expression: Let
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5*λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5*λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AS = [(7/11)* λ2* λ3 - (10/11)*(λ2 + λ3) + (19/11)]/[(λ2 - λ1)*( λ3 - λ1)]
BS = [(7/11)* λ1* λ3 - (10/11)*(λ1 + λ3) + (19/11)]/[(λ1 - λ2)*( λ3 - λ2)]
CS = [(7/11)* λ1* λ2 - (10/11)*(λ1 + λ2) + (19/11)]/[(λ2 - λ3)*( λ1 - λ3)]
Then, for n > 0:
S606(n) = (10/33)*3^n + 0.5*AS*[(λ1 + 1)^2]*λ1^(n-1) + 0.5*BS*[(λ2 + 1)^2]*λ2^(n-1) + 0.5*CS*[(λ3 + 1)^2]*λ3^(n-1) - 2
Comments