A183125
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 83, 236, 687, 2026, 6027, 18008, 53927, 161654, 484803, 1454212, 4362399, 13086914, 39260411, 117780848, 353342103, 1060025806, 3180076851, 9540229916, 28620689039, 85862066330, 257586198123, 772758593416, 2318275779207, 6954827336486, 20864482008227, 62593446023348, 187780338068607, 563341014204274, 1690023042611163
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Muniru A Asiru, Table of n, a(n) for n = 0..2020
- Uri Levy, The Magnetic Tower of Hanoi, arxiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3).
A183123 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
-
a:=[30, 83, 236, 687, 2026];; for n in [6..30] do a[n]:=5*a[n-1]-6*a[n-2] -2*a[n-3]+7*a[n-4]-3*a[n-5]; od; Concatenation([0, 1, 4, 11], a); # G. C. Greubel, Dec 04 2018
-
I:=[0,1,4,11,30,83,236,687,2026]; [n le 9 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))); // G. C. Greubel, Dec 04 2018
-
seq(coeff(series((-4*x^8-2*x^6+x^4-3*x^3-x^2+x)/(3*x^5-7*x^4+2*x^3+6*x^2-5*x+1),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Join[{0, 1, 4, 11}, LinearRecurrence[{5, -6, -2, 7, -3}, {30, 83, 236, 687, 2026}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
CoefficientList[Series[(- 4 x^8 - 2 x^6 + x^4 - 3 x^3 - x^2 + x) / (3 x^5 - 7 x^4 + 2 x^3 + 6 x^2 - 5 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
-
my(x='x+O('x^30)); concat([0], Vec((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))) \\ G. C. Greubel, Dec 04 2018
-
s=((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
A183122
Magnetic Tower of Hanoi, number of moves of disk number k, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 53, 153, 455, 1359, 4073, 12213, 36635, 109899, 329693, 989073, 2967215, 8901639, 26704913, 80114733, 240344195, 721032579, 2163097733, 6489293193, 19467879575, 58403638719, 175210916153, 525632748453, 1576898245355, 4730694736059
Offset: 0
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arxiv:1011.3843
- U. Levy, to play The Magnetic Tower of Hanoi, web applet
- Index entries for linear recurrences with constant coefficients, signature (3, 1, -3).
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
Join[{0,1,3,7},LinearRecurrence[{3,1,-3},{19,53,153},30]] (* Harvey P. Dale, Dec 08 2014 *)
A183123
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 4, 11, 30, 83, 236, 691, 2050, 6123, 18336, 54971, 164870, 494563, 1483636, 4450851, 13352490, 40057403, 120172136, 360516331, 1081548910, 3244646643, 9733939836, 29201819411, 87605458130, 262816374283, 788449122736, 2365347368091, 7096042104150
Offset: 0
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arxiv:1011.3843 [math.CO], 2010.
- U. Levy, to play The Magnetic Tower of Hanoi, web applet.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
Cf.
A183122 - "Magnetic Tower of Hanoi, number of moves of disk number k, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle" is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "62" algorithm mentioned above.
Cf.
A003462 "Partial sums of
A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
A183111 through
A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
-
LinearRecurrence[{4,-2,-4,3},{0,1,4,11,30,83,236},40] (* Harvey P. Dale, Jun 07 2015 *)
-
concat(0, Vec(x*(4*x^5+2*x^4+2*x^3+3*x^2-1)/((x-1)^2*(x+1)*(3*x-1)) + O(x^100))) \\ Colin Barker, Sep 18 2014
More terms and correction to recurrence by
Colin Barker, Sep 18 2014
A183124
Magnetic Tower of Hanoi, number of moves of disk number n, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
Original entry on oeis.org
0, 1, 3, 7, 19, 53, 153, 451, 1339, 4001, 11981, 35919, 107727, 323149, 969409, 2908187, 8724515, 26173497, 78520437, 235561255, 706683703
Offset: 0
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
A183122 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
Showing 1-4 of 4 results.
Comments