A183123 Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
0, 1, 4, 11, 30, 83, 236, 691, 2050, 6123, 18336, 54971, 164870, 494563, 1483636, 4450851, 13352490, 40057403, 120172136, 360516331, 1081548910, 3244646643, 9733939836, 29201819411, 87605458130, 262816374283, 788449122736, 2365347368091, 7096042104150
Offset: 0
References
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arxiv:1011.3843 [math.CO], 2010.
- U. Levy, to play The Magnetic Tower of Hanoi, web applet.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
Crossrefs
Cf. A183122 - "Magnetic Tower of Hanoi, number of moves of disk number k, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle" is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "62" algorithm mentioned above.
Cf. A003462 "Partial sums of A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle. A183111 through A183125 are related sequences, all associated with various solutions of the pre-coloring variations of the Magnetic Tower of Hanoi.
Programs
-
Mathematica
LinearRecurrence[{4,-2,-4,3},{0,1,4,11,30,83,236},40] (* Harvey P. Dale, Jun 07 2015 *)
-
PARI
concat(0, Vec(x*(4*x^5+2*x^4+2*x^3+3*x^2-1)/((x-1)^2*(x+1)*(3*x-1)) + O(x^100))) \\ Colin Barker, Sep 18 2014
Formula
a(n)=+4*a(n-1)-2*a(n-2)-4*a(n-3)+3*a(n-4) for n>6.
(a(n) = S62(n) as in referenced paper):
S62(n) = 3*S62(n-1) - 5*n + 17; n even; n >= 4
S62(n) = 3*S62(n-1) - 5*n + 13; n odd; n >= 5
S62(n) = S67(n-1) + S67(n-2) + S75(n-3) + 4*3^(n-3) + 2; n >= 3
S62(n) = 0.5*(67/108)*3^n + 2.5*n - 41/8; n even; n >= 4
S62(n) = 0.5*(67/108)*3^n + 2.5*n - 39/8; n odd; n >= 3.
a(n) = -5-(-1)^n/8+(67*3^(-3+n))/8+(5*n)/2 for n>2. - Colin Barker, Sep 18 2014
G.f.: x*(4*x^5+2*x^4+2*x^3+3*x^2-1) / ((x-1)^2*(x+1)*(3*x-1)). - Colin Barker, Sep 18 2014
Extensions
More terms and correction to recurrence by Colin Barker, Sep 18 2014
Comments